編寫教案可以幫助教師養(yǎng)成嚴(yán)謹(jǐn)?shù)墓ぷ鲬B(tài)度和認(rèn)真的辦事習(xí)慣,同時(shí)可以使備課更加充分,上課有條不紊。下面給大家整理一些高中數(shù)學(xué)教案范例,方便大家學(xué)習(xí)怎么寫高中數(shù)學(xué)教案范例。
一、什么是教學(xué)案例
教學(xué)案例是真實(shí)而又典型且含有問題的事件。簡(jiǎn)單地說,一個(gè)教學(xué)案例就是一個(gè)包含有疑難問題的實(shí)際情境的描述,是一個(gè)教學(xué)實(shí)踐過程中的故事,描述的是教學(xué)過程中“意料之外,情理之中的事”。
這可以從以下幾個(gè)層次來理解:
教學(xué)案例是事件:教學(xué)案例是對(duì)教學(xué)過程中的一個(gè)實(shí)際情境的描述。它講述的是一個(gè)故事,敘述的是這個(gè)教學(xué)故事的產(chǎn)生、發(fā)展的歷程,它是對(duì)教學(xué)現(xiàn)象的動(dòng)態(tài)性的把握。
教學(xué)案例是含有問題的事件:事件只是案例的基本素材,并不是所有的教學(xué)事件都可以成為案例。能夠成為案例的事件,必須包含有問題或疑難情境在內(nèi),并且也可能包含有解決問題的方法在內(nèi)。正因?yàn)檫@一點(diǎn),案例才成為一種獨(dú)特的研究成果的表現(xiàn)形式。
案例是真實(shí)而又典型的事件:案例必須是有典型意義的,它必須能給讀者帶來一定的啟示和體會(huì)。案例與故事之間的根本區(qū)別是:故事是可以杜撰的,而案例是不能杜撰和抄襲的,它所反映的是真是發(fā)生的事件,是教學(xué)事件的真實(shí)再現(xiàn)。是對(duì)“當(dāng)前”課堂中真實(shí)發(fā)生的實(shí)踐情景的描述。它不能用“搖擺椅子上杜撰的事實(shí)來替代”,也不能從抽象的、概括化的理論中演繹的事實(shí)來替代。
二、如何進(jìn)行教學(xué)案例研究
教學(xué)案例是教師教學(xué)行為真實(shí)、典型的記錄,也是教師教學(xué)理念和教學(xué)思想的真實(shí)體現(xiàn)。因此它是教育教學(xué)研究的寶貴資源,也是教師之間交流的重要媒介。進(jìn)行教學(xué)案例的研究是教師不斷反思、改進(jìn)自己教學(xué)的一種方法,能促使教師更為深刻地認(rèn)識(shí)到自己工作中的重點(diǎn)和難點(diǎn)。這個(gè)過程就是教師自我教育和成長(zhǎng)的過程。
那么如何進(jìn)行教學(xué)案例研究呢?一般情況下,案例研究的程序基本有以下兩個(gè)環(huán)節(jié):案例研究的準(zhǔn)備及實(shí)施、案例研究報(bào)告的撰寫與反思。
(一)案例研究的準(zhǔn)備與實(shí)施
1.研究主題的選擇
案例研究都要有研究的重點(diǎn)和主題,這個(gè)主題常與教學(xué)改革的核心理念、常見的疑難問題和困惑事件相關(guān),一般來說可以從教學(xué)的各個(gè)方面確定研究的主題,如從教師教學(xué)行為確定主題——教學(xué)材料的選擇、教學(xué)中的提問、教學(xué)媒體的使用、教學(xué)評(píng)價(jià)語言、課堂教學(xué)調(diào)控行為等;也可以從學(xué)生的學(xué)習(xí)方式確定主題——探究性學(xué)習(xí)、問題解決學(xué)習(xí)、合作學(xué)習(xí)、實(shí)踐性活動(dòng)等。另外從學(xué)科特點(diǎn)、教學(xué)內(nèi)容等都可以確定研究的主題。
研究者要了解當(dāng)前教學(xué)的大背景,教改的大方向,要熟悉相關(guān)的《課程標(biāo)準(zhǔn)》和有針對(duì)性地作一些理論準(zhǔn)備。還要通過有關(guān)的調(diào)查,搜集詳盡的材料(如閱讀教師的教學(xué)設(shè)計(jì),進(jìn)行訪談等),同時(shí)初步確定案例研究的方向、研究任務(wù),即初步確定案例的內(nèi)容是關(guān)于教學(xué)策略、學(xué)生行為或是教學(xué)技能的研究。
一般來說,案例研究主題的確定往往需要思考下面一些問題:即研究的事件是否對(duì)于自我發(fā)現(xiàn)更有潛力?選擇的事件對(duì)學(xué)生是否有較大的情感影響(心靈是否受到震撼)?關(guān)鍵事件再現(xiàn)了前人(或自己)過去成功的行為嗎?事件呈現(xiàn)的是一個(gè)你不能確定怎樣解決的問題?事件需要你做出困難的選擇嗎?事件使得你必須以一種感覺不熟悉的方式或是仍在思考的方式回答嗎?事件暗示一個(gè)與道德或道義上相關(guān)的問題嗎?研究的主題如果反映以上的一些內(nèi)容,那么這樣的案例研究在自我學(xué)習(xí)、內(nèi)省和深層次理解方面就可能更加富有成效。
高中數(shù)學(xué)教學(xué)案例研究的主題內(nèi)容主要集中在三方面:(1)學(xué)科特點(diǎn)的體現(xiàn):如數(shù)學(xué)思想方法的教學(xué)、數(shù)學(xué)思維品質(zhì)的培養(yǎng)、本質(zhì)屬性的抽象、數(shù)學(xué)結(jié)論的推廣等;(2)學(xué)生數(shù)學(xué)學(xué)習(xí)規(guī)律的探究:如數(shù)學(xué)學(xué)習(xí)習(xí)慣、解決問題的思維方式、獨(dú)立思考與合作學(xué)習(xí)等;(3)教師專業(yè)知識(shí)的提升:如數(shù)學(xué)板書與電子屏幕的展示對(duì)學(xué)生思維的影響、數(shù)學(xué)語言的訓(xùn)練對(duì)人們思維的影響、數(shù)學(xué)知識(shí)模式化教學(xué)的優(yōu)劣等。
2.案例研究的基本方法
(1)課堂觀察。觀察方法是指研究者按照一定的目的和計(jì)劃,在課堂教學(xué)活動(dòng)的自然狀態(tài)下,用自己的感官和輔助工具對(duì)研究對(duì)象進(jìn)行觀察研究的一種方法。它可以是教師自己對(duì)教學(xué)對(duì)象——學(xué)生,在課堂活動(dòng)中的片斷進(jìn)行觀察,也可以由其他教師來實(shí)施觀察,這兩種觀察的目的都是為了掌握課堂教學(xué)中的第一手資料。課堂觀察方法不限于用肉眼觀察、耳聽手記,還可利用各種工具如照相、錄音、攝像等作為輔助觀察的手段,以提高觀察的效果。對(duì)觀察的資料,可以逐字逐句整理成課堂教學(xué)實(shí)錄、教學(xué)程序表、提問技巧水平檢核表、提問行為類型頻次表、課堂教學(xué)時(shí)間分配表等,以便以后繼續(xù)分析案例提供翔實(shí)的原始材料。
(2)訪談與調(diào)查。對(duì)一些課堂教學(xué)不能觀察到的師生內(nèi)心活動(dòng),如教師教學(xué)的目的、教學(xué)程序的意圖、教學(xué)手段的運(yùn)用以及教學(xué)達(dá)標(biāo)的成效等一些需要進(jìn)一步了解的問題,可以通過與執(zhí)教教師的交談以及和學(xué)生的座談,以豐富和充實(shí)課堂教學(xué)觀察的材料;對(duì)學(xué)生在課堂教學(xué)活動(dòng)中回答問題的心理狀態(tài)、解題思路等問題,也可以在課后做一些問卷調(diào)查;對(duì)學(xué)生達(dá)標(biāo)的成度、效度,也可以作一些測(cè)試調(diào)查。從這些訪談、調(diào)查的材料中,再分析課堂教學(xué)的現(xiàn)象,不難發(fā)現(xiàn)造成各種課堂現(xiàn)象與教師教學(xué)行為之間的因果關(guān)系,然后再具體尋找在哪個(gè)教學(xué)環(huán)節(jié)中出現(xiàn)問題,從中提煉出解決問題的對(duì)策。
(3)文獻(xiàn)分析。文獻(xiàn)分析是通過查閱文獻(xiàn)資料,從過去和現(xiàn)在的有關(guān)研究成果中受到啟發(fā),從中找到課堂教學(xué)現(xiàn)象的理論依據(jù),從而增強(qiáng)案例分析的說服力。當(dāng)然,對(duì)廣大第一線教師而言,這里所運(yùn)用的文獻(xiàn)分析方法,并不是為了論證新教育理論,也不是去歸納教育的宏觀現(xiàn)象,而是通過有關(guān)教育理論文獻(xiàn)的查閱,去進(jìn)一步解讀課堂教學(xué)的活動(dòng),挖掘案例中的教育思想。如在數(shù)學(xué)教學(xué)中,我們常常通過學(xué)生的動(dòng)手操作來獲得有關(guān)的數(shù)學(xué)概念、法則與公式,那么,為什么要這樣做呢?就可以帶著問題,查閱、分析有關(guān)文獻(xiàn)資料,從學(xué)習(xí)中提高研究者自身的理論水平。
(二)案例研究報(bào)告的撰寫
1.常見的案例報(bào)告格式
撰寫教學(xué)案例,結(jié)構(gòu)可以靈活多樣,并非要千篇一律、一個(gè)模式,而是可以有不同的表現(xiàn)形式,如“案例背景——案例描述——案例分析”、“案例過程——案例反思”、“課例——問題——分析”、“主題與背景——情景描述——問題討論——詮釋與研究”等。當(dāng)前,國(guó)內(nèi)外課堂教學(xué)案例編寫的格式有多種多樣。但不管何種編寫格式,它們都有兩個(gè)共同的特點(diǎn):一是對(duì)案例的客觀描述;二是對(duì)案例中所述問題、關(guān)鍵教學(xué)事件等的分析。
下面介紹兩種常用的案例編寫的格式:
(1)“描述+分析”式
此格式的特點(diǎn)是將整個(gè)案例分為兩大部分,前半部分主要為描述課堂教學(xué)活動(dòng)的情景,后半部分主要針對(duì)情景中的一個(gè)問題進(jìn)行理論分析并獲得結(jié)論。案例的描述一般是把課堂教學(xué)活動(dòng)中的.某一片斷像講故事一樣原原本本地、具體生動(dòng)地描繪出來。描述的形式可以是一串問答式的課堂對(duì)話,也可以概括式地?cái)⑹?,主要是提供一個(gè)或一連串課堂教學(xué)疑難的問題,并把教育理論、教育思想隱藏在描述之中。案例的分析部分是針對(duì)描述的情景發(fā)表個(gè)人或多人的感受,同時(shí)加以理論的分析與說明。分析方法可以是對(duì)描述中提出的一個(gè)問題,從幾個(gè)方面加以分析:也可以是對(duì)描述中的幾個(gè)問題,集中從一個(gè)方面加以分析。分析的目的是要從描述的情景中提煉問題的本質(zhì),講述理論的解釋,明確正確的方法,最終獲得對(duì)關(guān)鍵教學(xué)事件的正確把握。
(2)“背景+描述+問題+詮釋”式
此格式是一種要求比較高的編寫格式,而且,它在實(shí)際教學(xué)中的作用也更大。通常它將整個(gè)案例分為四個(gè)部分:
A.主題與背景
主題是關(guān)鍵教學(xué)事件中所反映的案例主要觀點(diǎn),也是整篇案例的核心思想。背景主要敘述案例發(fā)生的地點(diǎn)、時(shí)間、人物的一些基本情況。當(dāng)然,這部分的內(nèi)容不宜很長(zhǎng),只需提綱挈領(lǐng)敘述清楚即可。
B.情景描述
與“描述+分析”式中的描述相同,主要突出主題所反映的課堂教學(xué)活動(dòng)。
C.問題討論
這是根據(jù)主題要求與情景描述,進(jìn)行的分析、歸納、總結(jié)與提煉,包括學(xué)科知識(shí)的要點(diǎn)、教學(xué)法和情景特點(diǎn)以及案例的說明與注意事項(xiàng)。這部分內(nèi)容主要是為案例教學(xué)服務(wù)的,目的是提高教師的認(rèn)識(shí)水平與學(xué)生主動(dòng)學(xué)習(xí)的能力。不同的教學(xué)觀念,不同的教學(xué)手段,所提出的問題也不同。對(duì)案例中所提出的主題以及情景描述中提出的問題闡述自己的見解。
D.詮釋與研究
這部分主要是用教育理論對(duì)案例情景作多角度的解讀。它包括對(duì)課堂教學(xué)行為的技術(shù)資料、課堂教學(xué)實(shí)錄以及教學(xué)活動(dòng)背后的故事等作理論上的分析。例如,在課堂教學(xué)中,我們??吹竭@樣的現(xiàn)象,課堂教學(xué)的效果高于預(yù)期的目標(biāo),反之教師期望的目標(biāo)學(xué)生沒有達(dá)到或有所偏離,教學(xué)內(nèi)容呈現(xiàn)的先后與學(xué)生理解的程度、教學(xué)方法運(yùn)用與學(xué)生內(nèi)在動(dòng)機(jī)的激發(fā)等環(huán)節(jié)存在著矛盾,這些事件的背后,必然隱含著豐富的教育思想。所以,通過詮釋,挖掘這些事件背后的內(nèi)在思想,揭示其教育規(guī)律就顯得十分的必要。
2.案例報(bào)告撰寫的關(guān)鍵
(1)掌握四個(gè)原則。要寫好教學(xué)案例,除了平時(shí)多積累素材,學(xué)習(xí)他人的案例作品以提高寫作技巧外,還應(yīng)把握以下四點(diǎn):
A.主題性原則:要有捕捉關(guān)鍵教學(xué)事件的意識(shí),以此確定案例研究的主題。為此要注意了解新的課程改革的動(dòng)向、把握適合時(shí)代要求的數(shù)學(xué)教育方式、明確學(xué)生數(shù)學(xué)學(xué)習(xí)的難點(diǎn)和重點(diǎn),尋找數(shù)學(xué)教師專業(yè)發(fā)展的途徑與規(guī)律。報(bào)告圍繞主題進(jìn)行情景描述和獲得解決問題的策略。這種描述不是簡(jiǎn)單的教學(xué)活動(dòng)實(shí)錄,要反映事件發(fā)生的過程,重點(diǎn)描述反映關(guān)鍵教學(xué)事件的變化和戲劇化的情境,猶如記敘文寫作,突出主題,詳寫重點(diǎn),雕刻高潮。
案例鮮明的主題通常關(guān)系到教學(xué)的核心理念、常見問題、處理方法等等,可以說,主題就是案例的靈魂。而主題的最佳表現(xiàn)形式就是文題直接體現(xiàn)主題。因此,設(shè)計(jì)主題就要有新意、有時(shí)代感,通俗地說就是與眾不同,要有獨(dú)特見解、獨(dú)家發(fā)現(xiàn)。來源于實(shí)踐的教學(xué)案例并非都有同等價(jià)值,關(guān)鍵要看撰寫者對(duì)實(shí)踐的發(fā)展與理論的升華程度,包括對(duì)題目的推敲。如有的教學(xué)案例重點(diǎn)描述了有戲劇性的情節(jié),用了“細(xì)節(jié)決定成敗”的題目,給人耳目一新,一下子揪住了讀者的心。再如,一些有創(chuàng)意的題目《“導(dǎo)之有方”方能“導(dǎo)之有效”》、《跳出數(shù)學(xué)教數(shù)學(xué)》、《在數(shù)學(xué)的疑難處悟成長(zhǎng)》、《捕捉資源因勢(shì)利導(dǎo)》等等,讓人一看題目就有閱讀的欲望。實(shí)踐證明,在寫作案例時(shí),選擇有感悟、有新意的內(nèi)容,在明確主題,恰當(dāng)擬題后再動(dòng)筆,才能寫出高質(zhì)量的案例。
B.理論性原則:解決問題的策略中應(yīng)當(dāng)蘊(yùn)含一定的教育基本原理和教育思想。實(shí)際是將自己對(duì)教育理念以及教育基本原理的理解滲透于描述的字里行間,比如學(xué)生做了什么,參與程度,投入程度如何,教師如何引導(dǎo)點(diǎn)撥,師生心理、行為變化情況等,無不體現(xiàn)教師的教學(xué)思想和教育基本原理。
C.敘事性原則:案例報(bào)告的書寫方式是敘事式,它不同于論述式。敘事方式必須以課堂教學(xué)生動(dòng)的事實(shí)為主要情節(jié),可以?shī)A敘夾議,也可以選擇情景片段,可以是一節(jié)課中的情景,也可以是圍繞一個(gè)主題的幾節(jié)課的情景片段。
D.學(xué)科性原則:數(shù)學(xué)案例報(bào)告一定要體現(xiàn)學(xué)科的特征,要有較深刻的理性思考,要反映數(shù)學(xué)的基本思想與方法,要符合課程標(biāo)準(zhǔn),滿足教材內(nèi)容的呈現(xiàn)方法,積極培養(yǎng)良好的思維習(xí)慣。就是撰寫者的教育思想和教育理念在教學(xué)實(shí)踐中具體體現(xiàn)。
(2)用好四種表述。教學(xué)案例的表述方法很多,可以歸納為以下四種方法:
A.故事式陳述法:就是教學(xué)全程或某一精彩教學(xué)片段實(shí)錄,包括教師和學(xué)生的一言一行。陳述時(shí),根據(jù)操作程序作一點(diǎn)“簡(jiǎn)評(píng)”,最后作“總評(píng)”。
B.以案說理:對(duì)教學(xué)過程進(jìn)行陳述時(shí),舍去與文題不相關(guān)或不重要的部分,并強(qiáng)化與主題相關(guān)的重要情節(jié),尤其是引發(fā)高潮的關(guān)鍵行為,然后有較長(zhǎng)篇幅的理性思考。
C.圖表展示法:用圖表進(jìn)行統(tǒng)計(jì)的形式體現(xiàn)撰寫者的教育思想,給人以一目了然的感覺,幫助讀者迅速了解撰寫者的寫作意圖,是常用的一種案例撰寫方法。比如,描述學(xué)生的參與人數(shù),投入程度,解決問題的質(zhì)量等多個(gè)問題,都可以在一張或數(shù)張圖表上用百分比或個(gè)(次)數(shù)進(jìn)行統(tǒng)計(jì)。在每一張圖表后,應(yīng)有一段“分析”或“結(jié)論”,將撰寫者的教學(xué)理念進(jìn)行理性闡述,亦可在圖表展示后,總的提出自己對(duì)案例的分析和建議。
D.分析討論法:在撰寫時(shí),應(yīng)汲取分析討論中最精彩的部分做深入、細(xì)致的全面記錄,最后撰寫者還必須對(duì)討論情況做一分析,或提出一些值得今后進(jìn)一步思考的問題。
3.優(yōu)秀案例的特征
(1)時(shí)代性:一個(gè)好的案例描述的是現(xiàn)實(shí)生活場(chǎng)景——案例的敘述要把事件置于一個(gè)時(shí)空框架之中,應(yīng)該以關(guān)注今天所面臨的疑難問題為著眼點(diǎn),至少應(yīng)該是近年發(fā)生的事情,展示的整個(gè)事實(shí)材料應(yīng)該與整個(gè)時(shí)代及教學(xué)背景相照應(yīng),這樣的案例讀者更愿意接觸。一個(gè)好的案例可以使讀者有身臨其境的感覺,并對(duì)案例所涉及的人產(chǎn)生移情作用。
(2)真實(shí)性:一個(gè)好的案例應(yīng)該包括從案例所反映的對(duì)象那里引述的材料——案例寫作必須持一種客觀的態(tài)度,因此可引述一些口頭的或書面的、正式的或非正式的材料,如對(duì)話、筆記、信函等,以增強(qiáng)案例的真實(shí)感和可讀性。重要的事實(shí)性材料應(yīng)注明資料來源。
(3)適用性:一個(gè)好的案例需要針對(duì)面臨的疑難問題提出解決辦法——案例不能只是提出問題,它必須提出解決問題的主要思路、具體措施,并包含著解決問題的詳細(xì)過程,這應(yīng)該是案例寫作的重點(diǎn)。如果一個(gè)問題可以提出多種解決辦法的話,那么最為適宜的方案,就應(yīng)該是與特定的背景材料相關(guān)最密切的那一個(gè)。如果有包治百病、普遍適用的解決問題的辦法,那么案例這種形式就不必要存在了。
(4)反思性:一個(gè)好的案例需要有對(duì)已經(jīng)做出的解決問題的決策的評(píng)價(jià)——評(píng)價(jià)是為了給新的決策提供參考點(diǎn)??稍诎咐拈_頭或結(jié)尾寫下案例作者對(duì)自己解決問題策略的評(píng)論,以點(diǎn)明案例的基本論點(diǎn)及其價(jià)值。
三、案例研究過程中需注意的問題
1.選材面過窄。從內(nèi)容上看,多數(shù)案例是關(guān)于課堂教學(xué)甚至局限于一節(jié)課的研究,往往不能說明問題,或者在一節(jié)課中,也只會(huì)從簡(jiǎn)單的對(duì)話分析問題,做不到全方位、多角度。這說明教師對(duì)教學(xué)情境的豐富性、復(fù)雜性和聯(lián)系性認(rèn)識(shí)不夠。
2.缺乏典型性。有的案例對(duì)教學(xué)實(shí)踐沒有挖掘與反思,隨意摘取一些教學(xué)片段泛泛而談、人云亦云,沒有實(shí)用價(jià)值。不能夠通過對(duì)某一事件現(xiàn)象的分析、處理、詮釋,達(dá)到舉一反三的效果,這樣的案例對(duì)他人沒什么借鑒作用。
3.主題不明確。主要體現(xiàn)為:
(1)主題渙散。有的案例象記流水帳,沒有根據(jù)需要進(jìn)行恰當(dāng)?shù)娜∩?,看不出作者要反映、探討什么問題,缺乏指導(dǎo)性、創(chuàng)新性和參考性。
(2)定題過于隨意。有的案例直接用案例研究依據(jù)的文題為題目,如《“三角函數(shù)”教學(xué)案例》、《“拋物線”教學(xué)案例》等,題目不鮮明、不形象,影響讀者的選讀和案例的傳播。
4.結(jié)構(gòu)不合理。案例作為一種文體,有它自己的寫作結(jié)構(gòu),只有優(yōu)化案例的結(jié)構(gòu),才能增強(qiáng)案例的可讀性和指導(dǎo)性。如寫成一般的教學(xué)設(shè)計(jì),一般包括“備課思路、教學(xué)目標(biāo)、教學(xué)重點(diǎn)、教學(xué)方法、課前準(zhǔn)備、教學(xué)內(nèi)容、教學(xué)過程”等內(nèi)容;寫成教學(xué)實(shí)錄,把一堂課從頭到尾詳盡地記錄下來,再寫上作者的看法;重記錄輕分析,過程描述多,評(píng)析少等等。沒有創(chuàng)新,平淡無趣,看不出案例研究和反映的問題。
5.描述與分析脫節(jié)。有的案例描述與分析矛盾,讓人不知所云;有時(shí)反映的是一種觀點(diǎn),分析闡明的是另一種觀點(diǎn),雖然不矛盾,但聯(lián)系不緊密;有的分析中熱衷于抄錄教育理論的一些條條,脫離案例描述的事件而空談理論,顯得空泛無物。
一、教學(xué)內(nèi)容分析
本節(jié)內(nèi)容是學(xué)生在學(xué)習(xí)了乘法原理、排列、排列數(shù)公式和加法原理以后的知識(shí),學(xué)生已經(jīng)掌握了排列問題,并且對(duì)順序與排列的關(guān)系已經(jīng)有了一個(gè)比較清晰的認(rèn)識(shí).因此關(guān)鍵是排列與組合的區(qū)別在于問題是否與順序有關(guān).與順序有關(guān)的是排列問題,與順序無關(guān)是組合問題,順序?qū)ε帕?、組合問題的求解特別重要.排列與組合的區(qū)別,從定義上來說是簡(jiǎn)單的,但在具體求解過程中學(xué)生往往感到困惑,分不清到底與順序有無關(guān)系,指導(dǎo)學(xué)生根據(jù)生活經(jīng)驗(yàn)和問題的內(nèi)涵領(lǐng)悟其中體現(xiàn)出來的順序.教的秘訣在于度,學(xué)的真諦在于悟,只有學(xué)生真正理解了,才能舉一反三、融會(huì)貫通.
二、教學(xué)目標(biāo)設(shè)計(jì)
1.理解組合的意義,掌握組合數(shù)的計(jì)算公式;
2.能正確認(rèn)識(shí)組合與排列的聯(lián)系與區(qū)別
3.通過練習(xí)與訓(xùn)練體驗(yàn)并初步掌握組合數(shù)的計(jì)算公式
三、教學(xué)重點(diǎn)及難點(diǎn)
組合概念的理解和組合數(shù)公式;組合與排列的區(qū)別.
四、教學(xué)用具準(zhǔn)備
多媒體設(shè)備
五、教學(xué)流程設(shè)計(jì)
六、教學(xué)過程設(shè)計(jì)
一、 復(fù)習(xí)引入
1.復(fù)習(xí)
我們?cè)谇皫坠?jié)中學(xué)習(xí)了排列、排列數(shù)以及排列數(shù)公式
定 義
特 點(diǎn)
相同排列
公 式
排 列
以上由學(xué)生口答.
2.引入
那么請(qǐng)問:平面上有7個(gè)點(diǎn),問以這7點(diǎn)中任何兩個(gè)為端點(diǎn),構(gòu)成有向線段有幾條?
這是一個(gè)排列問題
若改為:構(gòu)成的線段有幾條?則為 ,
其實(shí)亦可用另一種方法解決,這就是組合.
二、學(xué)習(xí)新課
探究性質(zhì)
1. 組合定義: P16
一般地,從個(gè)不同元素中取出個(gè)元素并成一組,叫做從個(gè)不同元素中取出個(gè)元素的一個(gè)組合.
【說明】:⑴不同元素; ⑵“只取不排”——無序性;
⑶相同組合:元素相同.
2.組合數(shù)定義:
從個(gè)不同元素中取出個(gè)元素的所有組合的個(gè)數(shù),叫做從個(gè)不同元素中取出個(gè)元素的組合數(shù).用符號(hào)表示.
如:引入中的例子可表示為
== 這是為什么呢?
因?yàn)?構(gòu)成有向線段的問題可分成2步來完成:
第一步,先從7個(gè)點(diǎn)中選2個(gè)點(diǎn)出來,共有種選法;
第二步,將選出的2個(gè)點(diǎn)做一個(gè)排列,有種次序;
根據(jù)乘法原理,共有·= 所以
·判斷何為排列、組合問題: 利用書本P16~P17例題請(qǐng)學(xué)生判斷
·這個(gè)公式叫組合數(shù)公式
3.組合數(shù)公式:
如= =
用計(jì)算器求 、 、 、
可發(fā)現(xiàn)= =
由此猜想:
用實(shí)際例子說明:比如要從50人中挑選4個(gè)出來參加迎春長(zhǎng)跑的選擇方案有,就相當(dāng)于挑46個(gè)人不參加長(zhǎng)跑的選擇方案一樣.“取法”與“剩法”是“一 一對(duì)應(yīng)”的.
證明:∵
又 ,∴
當(dāng)m=n時(shí),
此性質(zhì)作用:當(dāng)時(shí),計(jì)算可變?yōu)橛?jì)算,能夠使運(yùn)算簡(jiǎn)化.
4. 組合數(shù)性質(zhì):
1、
2、=
可解釋為:從這n 1個(gè)不同元素中取出m個(gè)元素的組合數(shù)是,這些組合可以分為兩類:一類含有元素,一類不含有.含有的組合是從這n個(gè)元素中取出m (1個(gè)元素與組成的,共有個(gè);不含有的組合是從這n個(gè)元素中取出m個(gè)元素組成的,共有個(gè).根據(jù)加法原理,可以得到組合數(shù)的另一個(gè)性質(zhì).在這里,主要體現(xiàn)從特殊到一般的歸納思想,“含與不含其元素”的分類思想.
證明:
得證.
【說明】1( 公式特征:下標(biāo)相同而上標(biāo)差1的兩個(gè)組合數(shù)之和,等于下標(biāo)比原下標(biāo)多1而上標(biāo)與高的相同的一個(gè)組合數(shù).
2( 此性質(zhì)的作用:恒等變形,簡(jiǎn)化運(yùn)算.在今后學(xué)習(xí)“二項(xiàng)式定理”時(shí),我們會(huì)看到它的主要應(yīng)用.
2.例題分析
例1、(1),求x
(2)
(3)
略解:(1)
(2)
(3)
例2、應(yīng)用題:
有15本不同的書,其中6本是數(shù)學(xué)書,問:
分給甲4本,且都不是數(shù)學(xué)書;
略解:(1)
3.問題拓展
例3.題設(shè)同例2:
(2)平均分給3人;
(3)若平均分為3份;
(4)甲分2本,乙分7本,丙分6本;
(5)1人2本,1人7本,1人6本.
略解:(2) (3)
(4) (5)
三、課堂小結(jié)
指導(dǎo)學(xué)生根據(jù)生活經(jīng)驗(yàn)和問題的內(nèi)涵領(lǐng)悟其中體現(xiàn)出來的順序.教的秘訣在于度,學(xué)的真諦在于悟,只有學(xué)生真正理解了,才能舉一反三、融會(huì)貫通.
能列舉出某種方法時(shí),讓學(xué)生通過交換元素位置的辦法加以鑒別.
學(xué)生易于辨別組合、全排列問題,而排列問題就是先組合后全排列.在求解排列、組合問題時(shí),可引導(dǎo)學(xué)生找出兩定義的關(guān)系后,按以下兩步思考:首先要考慮如何選出符合題意要求的元素來,選出元素后再去考慮是否要對(duì)元素進(jìn)行排隊(duì),即第一步僅從組合的角度考慮,第二步則考慮元素是否需全排列,如果不需要,是組合問題;否則是排列問題.
排列、組合問題大都來源于同學(xué)們生活和學(xué)習(xí)中所熟悉的情景,解題思路通常是依據(jù)具體做事的過程,用數(shù)學(xué)的原理和語言加以表述.也可以說解排列、組合題就是從生活經(jīng)驗(yàn)、知識(shí)經(jīng)驗(yàn)、具體情景的出發(fā),正確領(lǐng)會(huì)問題的實(shí)質(zhì),抽象出“按部就班”的處理問題的過程.據(jù)觀察,有些同學(xué)之所以學(xué)習(xí)中感到抽象,不知如何思考,并不是因?yàn)閿?shù)學(xué)知識(shí)跟不上,而是因?yàn)槠綍r(shí)做事、考慮問題就缺乏條理性,或解題思路是自己主觀想象的做法(很可能是有悖于常理或常規(guī)的做法).要解決這個(gè)問題,需要師生一道在分析問題時(shí)要根據(jù)實(shí)際情況,怎么做事就怎么分析,若能借助適當(dāng)?shù)墓ぞ?,模擬做事的過程,則更能說明問題.久而久之,學(xué)生的邏輯思維能力將會(huì)大大提高.
四、作業(yè)布置
(略)
七、教學(xué)設(shè)計(jì)說明
在學(xué)習(xí)過程中,從排列問題引入,隨即自然地過渡到組合問題.由此讓學(xué)生對(duì)于排列與組合兩者的異同有深刻理解,并能自如地進(jìn)行判斷.
本節(jié)課在教學(xué)技術(shù)上通過多媒體課件大大縮短了教師板書抄題的時(shí)間,讓學(xué)生能夠更加連貫的思考以及探索問題.
在例題的設(shè)計(jì)上從最基本的組合數(shù)公式的利用,到簡(jiǎn)單的應(yīng)用題,再到組合中較難的分組分配以及平均不平均分配問題的訓(xùn)練,由淺入深,層層遞進(jìn),以積極發(fā)揮課堂教學(xué)的基礎(chǔ)型和研究型功能,培養(yǎng)學(xué)生的基礎(chǔ)性學(xué)力和發(fā)展性學(xué)力.
在課堂教學(xué)中教師遵循“以學(xué)生為主體”的思想,鼓勵(lì)學(xué)生善于觀察和發(fā)現(xiàn);鼓勵(lì)學(xué)生積極思考和探究;鼓勵(lì)學(xué)生大膽猜想,努力營(yíng)造一個(gè)民主和諧、平等交流的課堂氛圍,采取對(duì)話式教學(xué),調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,激發(fā)學(xué)生學(xué)習(xí)的熱情,使學(xué)生開闊思維空間,讓學(xué)生積極參與教學(xué)活動(dòng),提高學(xué)生的數(shù)學(xué)思維能力.
教學(xué)目標(biāo):①掌握對(duì)數(shù)函數(shù)的性質(zhì)。
②應(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)可以解決:對(duì)數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值 域及單調(diào)性。
③ 注重函數(shù)思想、等價(jià)轉(zhuǎn)化、分類討論等思想的滲透,提高解題能力。
教學(xué)重點(diǎn)與難點(diǎn):對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用。
教學(xué)過程設(shè)計(jì):
⒈復(fù)習(xí)提問:對(duì)數(shù)函數(shù)的概念及性質(zhì)。
⒉開始正課
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
師:請(qǐng)同學(xué)們觀察一下⑴中這兩個(gè)對(duì)數(shù)有何特征?
生:這兩個(gè)對(duì)數(shù)底相等。
師:那么對(duì)于兩個(gè)底相等的對(duì)數(shù)如何比大小?
生:可構(gòu)造一個(gè)以a為底的對(duì)數(shù)函數(shù),用對(duì)數(shù)函數(shù)的單調(diào)性比大小。
師:對(duì),請(qǐng)敘述一下這道題的解題過程。
生:對(duì)數(shù)函數(shù)的單調(diào)性取決于底的大?。寒?dāng)0調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞增,所以loga5.1
板書:
解:Ⅰ)當(dāng)0∵5.1<5.9 ∴l(xiāng)oga5.1>loga5.9
Ⅱ)當(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù),∵5.1<5.9 ∴l(xiāng)oga5.1
師:請(qǐng)同學(xué)們觀察一下⑵中這三個(gè)對(duì)數(shù)有何特征?
生:這三個(gè)對(duì)數(shù)底、真數(shù)都不相等。
師:那么對(duì)于這三個(gè)對(duì)數(shù)如何比大小?
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板書:略。
師:比較對(duì)數(shù)值的大小常用方法:①構(gòu)造對(duì)數(shù)函數(shù),直接利用對(duì)數(shù)函數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對(duì)數(shù)函數(shù)圖象的位置關(guān)系來比大小。
2 函數(shù)的定義域, 值 域及單調(diào)性。
例 2 ⑴求函數(shù)y=的定義域。
⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)
師:如何來求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數(shù)中有對(duì)數(shù)的形式,則真數(shù)大于零,如果函數(shù)中同時(shí)出現(xiàn)以上幾種情況,就要全部考慮進(jìn)去,求它們共同作用的結(jié)果。)生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數(shù)x>0。
板書:
解:∵ 2x-1≠0 x≠0.5
log0.8x-1≥0 , x≤0.8
x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
師:接下來我們一起來解這個(gè)不等式。
分析:要解這個(gè)不等式,首先要使這個(gè)不等式有意義,即真數(shù)大于零,
再根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性求解。
師:請(qǐng)你寫一下這道題的解題過程。
生:<板書>
解: x2+2x-3>0 x<-3 或 x>1
(3x+3)>0 , x>-1
x2+2x-3<(3x+3) -2
不等式的解為:1
例 3 求下列函數(shù)的值域和單調(diào)區(qū)間。
⑴y=log0.5(x- x2)
⑵y=loga(x2+2x-3)(a>0,a≠1)
師:求例3中函數(shù)的的值域和單調(diào)區(qū)間要用及復(fù)合函數(shù)的思想方法。
下面請(qǐng)同學(xué)們來解⑴。
生:此函數(shù)可看作是由y= log0.5u, u= x- x2復(fù)合而成。
板書:
解:⑴∵u= x- x2>0, ∴0
u= x- x2=-(x-0.5)2+0.25, ∴0
∴y= log0.5u≥log0.50.25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u= x- x2
y= log0.5u
y=log0.5(x- x2)
函數(shù)y=log0.5(x- x2)的單調(diào)遞減區(qū)間(0,0.5],單調(diào)遞 增區(qū)間[0.5,1)
注:研究任何函數(shù)的性質(zhì)時(shí),都應(yīng)該首先保證這個(gè)函數(shù)有意義,否則函數(shù)都不存在,性質(zhì)就無從談起。
師:在⑴的基礎(chǔ)上,我們一起來解⑵。請(qǐng)同學(xué)們觀察一下⑴與⑵有什么區(qū)別?
生:⑴的底數(shù)是常值,⑵的底數(shù)是字母。
師:那么⑵如何來解?
生:只要對(duì)a進(jìn)行分類討論,做法與⑴類似。
板書:略。
⒊小結(jié)
這堂課主要講解如何應(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)解決一些問題,希望能通過這堂課使同學(xué)們對(duì)等價(jià)轉(zhuǎn)化、分類討論等思想加以應(yīng)用,提高解題能力。
⒋作業(yè)
⑴解不等式
①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數(shù))
⑵已知函數(shù)y=loga(x2-2x),(a>0,a≠1)
①求它的單調(diào)區(qū)間;②當(dāng)0
⑶已知函數(shù)y=loga (a>0, b>0, 且 a≠1)
①求它的定義域;②討論它的奇偶性; ③討論它的單調(diào)性。
⑷已知函數(shù)y=loga(ax-1) (a>0,a≠1),
①求它的定義域;②當(dāng)x為何值時(shí),函數(shù)值大于1;③討論它的單調(diào)性。
5.課堂教學(xué)設(shè)計(jì)說明
這節(jié)課是安排為習(xí)題課,主要利用對(duì)數(shù)函數(shù)的性質(zhì)解決一些問題,整個(gè)一堂課分兩個(gè)部分:一 .比較數(shù)的大小,想通過這一部分的練習(xí),培養(yǎng)同學(xué)們構(gòu)造函數(shù)的思想和分類討論、數(shù)形結(jié)合的思想。二.函數(shù)的定義域, 值 域及單調(diào)性,想通過這一部分的練習(xí),能使同學(xué)們重視求函數(shù)的定義域。因?yàn)閷W(xué)生在求函數(shù)的值域和單調(diào)區(qū)間時(shí),往往不考慮函數(shù)的定義域,并且這種錯(cuò)誤很頑固,不易糾正。因此,力求學(xué)生做到想法正確,步驟清晰。為了調(diào)動(dòng)學(xué)生的積極性,突出學(xué)生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學(xué)生獨(dú)立完成。但是,每一道題的解題過程,老師都應(yīng)該給以板書,這樣既讓學(xué)生有了獲取新知識(shí)的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡(jiǎn)明扼要地小結(jié),以使好學(xué)生掌握地更完善,較差的學(xué)生也能夠跟上。
第二教時(shí)教材:
1、復(fù)習(xí)
2、《課課練》及《教學(xué)與測(cè)試》中的有關(guān)內(nèi)容目的:復(fù)習(xí)集合的概念;鞏固已經(jīng)學(xué)過的內(nèi)容,并加深對(duì)集合的理解。
過程:
一、復(fù)習(xí):(結(jié)合提問)
1.集合的概念含集合三要素
2.集合的表示、符號(hào)、常用數(shù)集、列舉法、描述法
3.集合的分類:有限集、無限集、空集、單元集、二元集
4.關(guān)于“屬于”的概念
二、例一用適當(dāng)?shù)姆椒ū硎鞠铝屑希?/p>
1.平方后仍等于原數(shù)的數(shù)集解:{x x2=x}={0,1}
2.比2大3的數(shù)的集合解:{x x=2+3}={5}
3.不等式x2-x-6<0的整數(shù)解集解:{xZx2-x-6<0}={xZ-2<x<3}={-1,0,1,2}
4.過原點(diǎn)的直線的集合解:{(x,y)y=kx}
5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)4x2+9y2-4x+12y+5=0}={(x,y)(2x-1)2+(3y+2)2=0}={(x,y)(1/2,-2/3)}
6.使函數(shù)y=有意義的實(shí)數(shù)x的集合解:{x x2+x-60}={x x2且x3,xR}
三、處理蘇大《教學(xué)與測(cè)試》第一課含思考題、備用題
四、處理《課課練》
五、作業(yè)《教學(xué)與測(cè)試》第一課練習(xí)題
一、教材分析
1、教材的地位和作用:
《等差數(shù)列》是人教版新課標(biāo)教材《數(shù)學(xué)》必修5第二章第二節(jié)的內(nèi)容。數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對(duì)比的依據(jù)。
2、教學(xué)目標(biāo)
根據(jù)教學(xué)大綱的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標(biāo)
a知識(shí)與技能:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想;初步引入“數(shù)學(xué)建?!钡乃枷敕椒ú⒛苓\(yùn)用。培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。
b.過程與方法:在教學(xué)過程中我采用討論式、啟發(fā)式的方法使學(xué)生深刻的理解不完全歸納法。
c.情感態(tài)度與價(jià)值觀:通過對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
3、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):
①等差數(shù)列的概念。
②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。
難點(diǎn):
①等差數(shù)列的通項(xiàng)公式的推導(dǎo)
②用數(shù)學(xué)思想解決實(shí)際問題
二、學(xué)情教法分析:
對(duì)于高一學(xué)生,知識(shí)經(jīng)驗(yàn)已較為豐富,具備了一定的抽象思維能力和演繹推理能力,所以我本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。學(xué)生在初中時(shí)只是簡(jiǎn)單的接觸過等差數(shù)列,具體的公式還不會(huì)用,因些在公式應(yīng)用上加強(qiáng)學(xué)生的理解
三、學(xué)法分析:
在引導(dǎo)分析時(shí),留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
四、教學(xué)過程
1.創(chuàng)設(shè)情景提出問題
首先要學(xué)生回憶數(shù)列的有關(guān)概念,數(shù)列的兩種方法——通項(xiàng)公式和遞推公式
一、教學(xué)內(nèi)容分析
二面角是我們?nèi)粘I钪薪?jīng)常見到的一個(gè)圖形,它是在學(xué)生學(xué)過空間異面直線所成的角、直線和平面所成角之后,研究的一種空間的角,二面角進(jìn)一步完善了空間角的概念。掌握好本節(jié)課的知識(shí),對(duì)學(xué)生系統(tǒng)地理解直線和平面的知識(shí)、空間想象能力的培養(yǎng),乃至創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。
二、教學(xué)目標(biāo)設(shè)計(jì)
理解二面角及其平面角的概念;能確認(rèn)圖形中的已知角是否為二面角的平面角;能作出二面角的平面角,并能初步運(yùn)用它們解決相關(guān)問題。
三、教學(xué)重點(diǎn)及難點(diǎn)
二面角的平面角的概念的形成以及二面角的平面角的作法。
四、教學(xué)流程設(shè)計(jì)
五、教學(xué)過程設(shè)計(jì)
一、新課引入
1。復(fù)習(xí)和回顧平面角的有關(guān)知識(shí)。
平面中的角
定義從一個(gè)頂點(diǎn)出發(fā)的兩條射線所組成的圖形,叫做角
圖形
結(jié)構(gòu)射線點(diǎn)射線
表示法AOB,O等
2。復(fù)習(xí)和回顧異面直線所成的角、直線和平面所成的角的定義,及其共同特征。(空間角轉(zhuǎn)化為平面角)
3。觀察:陡峭與否,跟山坡面與水平面所成的角大小有關(guān),而山坡面與水平面所成的角就是兩個(gè)平面所成的角。在實(shí)際生活當(dāng)中,能夠轉(zhuǎn)化為兩個(gè)平面所成角例子非常多,比如在這間教室里,誰能舉出能夠體現(xiàn)兩個(gè)平面所成角的實(shí)例?(如圖1,課本的開合、門或窗的開關(guān)。)從而,引出二面角的定義及相關(guān)內(nèi)容。
二、學(xué)習(xí)新課
(一)二面角的定義
平面中的角二面角
定義從一個(gè)頂點(diǎn)出發(fā)的兩條射線所組成的圖形,叫做角課本P17
圖形
結(jié)構(gòu)射線點(diǎn)射線半平面直線半平面
表示法AOB,O等二面角a或—AB—
(二)二面角的圖示
1。畫出直立式、平臥式二面角各一個(gè),并分別給予表示。
2。在正方體中認(rèn)識(shí)二面角。
(三)二面角的平面角
平面幾何中的角可以看作是一條射線繞其端點(diǎn)旋轉(zhuǎn)而成,它有一個(gè)旋轉(zhuǎn)量,它的大小可以度量,類似地,二面角也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成,它也有一個(gè)旋轉(zhuǎn)量,那么,二面角的大小應(yīng)該怎樣度量?
1。二面角的平面角的定義(課本P17)。
2。AOB的大小與點(diǎn)O在棱上的位置無關(guān)。
[說明]①平面與平面的位置關(guān)系,只有相交或平行兩種情況,為了對(duì)相交平面的相互位置作進(jìn)一步的探討,有必要來研究二面角的度量問題。
②與兩條異面直線所成的角、直線和平面所成的角做類比,用平面角去度量。
③二面角的平面角的三個(gè)主要特征:角的頂點(diǎn)在棱上;角的兩邊分別在兩個(gè)半平面內(nèi);角的兩邊分別與棱垂直。
3。二面角的平面角的范圍:
(四)例題分析
例1一張邊長(zhǎng)為a的正三角形紙片ABC,以它的高AD為折痕,將其折成一個(gè)的二面角,求此時(shí)B、C兩點(diǎn)間的距離。
[說明]①檢查學(xué)生對(duì)二面角的平面角的定義的掌握情況。
②翻折前后應(yīng)注意哪些量的位置和數(shù)量發(fā)生了變化,哪些沒變?
例2如圖,已知邊長(zhǎng)為a的等邊三角形所在平面外有一點(diǎn)P,使PA=PB=PC=a,求二面角的大小。
[說明]①求二面角的步驟:作證算答。
②引導(dǎo)學(xué)生掌握解題可操作性的通法(定義法和線面垂直法)。
例3已知正方體,求二面角的大小。(課本P18例1)
[說明]使學(xué)生進(jìn)一步熟悉作二面角的平面角的方法。
(五)問題拓展
例4如圖,山坡的傾斜度(坡面與水平面所成二面角的度數(shù))是,山坡上有一條直道CD,它和坡腳的水平線AB的夾角是,沿這條路上山,行走100米后升高多少米?
[說明]使學(xué)生明白數(shù)學(xué)既來源于實(shí)際又服務(wù)于實(shí)際。
三、鞏固練習(xí)
1。在棱長(zhǎng)為1的正方體中,求二面角的大小。
2。若二面角的大小為,P在平面上,點(diǎn)P到的距離為h,求點(diǎn)P到棱l的距離。
四、課堂小結(jié)
1。二面角的定義
2。二面角的平面角的定義及其范圍
3。二面角的平面角的常用作圖方法
4。求二面角的大?。ㄗ髯C算答)
五、作業(yè)布置
1。課本P18練習(xí)14。4(1)
2。在二面角的一個(gè)面內(nèi)有一個(gè)點(diǎn),它到另一個(gè)面的距離是10,求它到棱的距離。
3。把邊長(zhǎng)為a的正方形ABCD以BD為軸折疊,使二面角A—BD—C成的二面角,求A、C兩點(diǎn)的距離。
六、教學(xué)設(shè)計(jì)說明
本節(jié)課的設(shè)計(jì)不是簡(jiǎn)單地將概念直接傳受給學(xué)生,而是考慮到知識(shí)的形成過程,設(shè)法從學(xué)生的數(shù)學(xué)現(xiàn)實(shí)出發(fā),調(diào)動(dòng)學(xué)生積極參與探索、發(fā)現(xiàn)、問題解決全過程。二面角及二面角的平面角這兩大概念的引出均運(yùn)用了類比的手段和方法。教學(xué)過程中通過教師的層層鋪墊,學(xué)生的主動(dòng)探究,使學(xué)生經(jīng)歷概念的形成、發(fā)展和應(yīng)用過程,有意識(shí)地加強(qiáng)了知識(shí)形成過程的教學(xué)。
教學(xué)過程:
前言:
今天是新學(xué)期的第一堂語文課,王老師為大家?guī)砹艘皇仔≡?shī)。(音樂中指名讀,齊讀。)
三年級(jí)的天空
今天,是20__年的一天
一張張可愛的笑臉
從20__年的家中匆匆趕來
來到美麗的暨陽(yáng)學(xué)校,
繼續(xù)
踏入三年級(jí)明亮的天空
書寫新的傳奇。
是呀,三年級(jí)的天空一定會(huì)無比明媚。那么,今天先讓我們一起來回憶剛剛過去的美好的寒假。
一、口頭交流寒假趣事
1.新年過得如何?(用詞語來形容)
2.你覺得最有趣的是什么事?(根據(jù)你說的詞語來說說)
二、書面了解別人的寒假趣事
1.全班欣賞同學(xué)寫的優(yōu)秀作文。(說說自己的感受。)
2.再欣賞網(wǎng)上找的。(認(rèn)真傾聽,分享快樂。)
三、王老師介紹自己的寒假趣事
1.你猜猜王老師怎么度過的?
2.公布答案。(在帶寶寶的同時(shí)看書)
四、送禮物——聽故事
王老師知道我們班同學(xué)都非常喜歡聽故事,所以我在寒假的時(shí)候,特別挑選了一個(gè)故事,送給大家,作為新年禮物。
毛蟲和我
——送給新學(xué)期的孩子們
毛蟲知道,在它的身體里面,藏著一只蝴蝶。是的,它一直都知道,一刻也不曾忘記。當(dāng)它慢吞吞地爬過菜葉的時(shí)候,它在想著這件事;當(dāng)它貪婪地把葉子咬出一個(gè)個(gè)小洞時(shí),它在想著這件事;當(dāng)它舒展身體曬太陽(yáng)的時(shí)候,它在想著這件事;當(dāng)它親吻一朵美麗的小花兒時(shí),它在想這件事……
我要挑最鮮嫩的葉子吃,它對(duì)自己說,這樣當(dāng)我變成蝴蝶的時(shí)候,才會(huì)有艷麗的色彩。我要多多地吃,它對(duì)自己說,這樣當(dāng)我變成蝴蝶的時(shí)候,翅膀才會(huì)有力氣。這金色的光線多么溫暖,它對(duì)自己說,最重要的是,它將變成金粉裝點(diǎn)我的翅膀。這朵小花多么可愛,它對(duì)自己說,將來我的翅膀上面,也會(huì)開出美麗的花兒來。
“哎呀,毛毛蟲!好丑好惡心喲!”一個(gè)小女孩指著它叫道。這樣的話毛毛蟲聽得多了,一點(diǎn)兒也不會(huì)破壞它的好心情。哦,我將長(zhǎng)出一雙美麗的翅膀,它對(duì)自己說。這樣想著,毛毛蟲昂起了它小小的腦袋,慢慢爬走了。
我知道,在我的身體里面,藏著一個(gè)更好的自己。是的,我一直都知道,一刻也不曾忘記。
所以我從來都不挑食,我知道所有健康的食物都將變成我的一部分,成就一個(gè)更好的我自己。所以我努力地讀書,我知道所有那些有趣的書、嚴(yán)肅的書、美麗的書、智慧的書,最終都將變成我的一部分,成就一個(gè)更好的我自己。所以我喜歡認(rèn)識(shí)新朋友,我知道所有那些善良的朋友、聰明的朋友、慷慨的朋友、睿智的朋友,他們的友情以及他們的美好天性,最終都將變成我的一部分,成就一個(gè)更好的我自己。所以我積極上好每一堂課,認(rèn)真完成每一次作業(yè),我知道千里之行始于足下,我走過的每一步路,我做過的每一件事,最終都將變成我的一部分,成就一個(gè)更好的我自己。所以我喜歡親近大自然,我知道所有那些美麗的山水、陽(yáng)光、花香和清新空氣,最終都將變成我的一部分,成就一個(gè)更好的我自己。
每天早晨,我都會(huì)在鏡子面前照一照自己;每天早晨,我都會(huì)在鏡子里看到一個(gè)普普通通的小女孩(小男孩)。
可我知道,在我的身體里面,藏著一個(gè)更好的我自己。就像毛毛蟲會(huì)變成蝴蝶,小種子會(huì)長(zhǎng)成大樹,我也會(huì)變成一個(gè)更好的我自己。
故事聽完了,王老師要檢查下你們是不是認(rèn)真在聽,有沒有收到我的禮物?
1.毛毛蟲的理想是什么?它為了成就更好的自己,怎么努力的?我的理想是什么?為了做最好的自己,我又是怎么做的?(大方向)
2.聽了故事,說說自己新學(xué)期的目標(biāo)?為了做最好的自己,在學(xué)習(xí)中你又準(zhǔn)備怎么做?(小方向)(多閱讀、多思考、多寫作)
我相信,只要我們像毛毛蟲那樣努力,我們也一定可以變成美麗的蝴蝶!
四、總結(jié)
讓我們每個(gè)人多閱讀、多思考、多寫作,向著美好的自己努力。最后讓我們?cè)谠?shī)歌中結(jié)束我們的開學(xué)第一課。(再次誦讀詩(shī)歌)
排列
教學(xué)目標(biāo)
(1)正確理解排列的意義。能利用樹形圖寫出簡(jiǎn)單問題的所有排列;
(2)了解排列和排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;
(3)會(huì)分析與數(shù)字有關(guān)的排列問題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;
教學(xué)重點(diǎn)難點(diǎn)
重點(diǎn)是排列的定義、排列數(shù)并運(yùn)用這個(gè)公式去解決有關(guān)排列數(shù)的應(yīng)用問題。
難點(diǎn)是解有關(guān)排列的應(yīng)用題。
教學(xué)過程設(shè)計(jì)
一、 復(fù)習(xí)引入
上節(jié)課我們學(xué)習(xí)了兩個(gè)基本原理,請(qǐng)大家完成以下兩題的練習(xí)(用投影儀出示):
1.書架上層放著50本不同的社會(huì)科學(xué)書,下層放著40本不同的自然科學(xué)的書.
(1)從中任取1本,有多少種取法?
(2)從中任取社會(huì)科學(xué)書與自然科學(xué)書各1本,有多少種不同的取法?
2.某農(nóng)場(chǎng)為了考察三個(gè)外地優(yōu)良品種A,B,C,計(jì)劃在甲、乙、丙、丁、戊共五種類型的土地上分別進(jìn)行引種試驗(yàn),問共需安排多少個(gè)試驗(yàn)小區(qū)?
找一同學(xué)談解答并說明怎樣思考的的過程
第1(1)小題從書架上任取1本書,有兩類辦法,第一類辦法是從上層取社會(huì)科學(xué)書,可以從50本中任取1本,有50種方法;第二類辦法是從下層取自然科學(xué)書,可以從40本中任取1本,有40種方法.根據(jù)加法原理,得到不同的取法種數(shù)是50+40=90.第(2)小題從書架上取社會(huì)科學(xué)、自然科學(xué)書各1本(共取出2本),可以分兩個(gè)步驟完成:第一步取一本社會(huì)科學(xué)書,第二步取一本自然科學(xué)書,根據(jù)乘法原理,得到不同的取法種數(shù)是: 50×40=2000.
第2題說,共有A,B,C三個(gè)優(yōu)良品種,而每個(gè)品種在甲類型土地上實(shí)驗(yàn)有三個(gè)小區(qū),在乙類型的土地上有三個(gè)小區(qū)……所以共需3×5=15個(gè)實(shí)驗(yàn)小區(qū).
二、 講授新課
學(xué)習(xí)了兩個(gè)基本原理之后,現(xiàn)在我們繼續(xù)學(xué)習(xí)排列問題,這是我們本節(jié)討論的重點(diǎn).先從實(shí)例入手:
1.北京、上海、廣州三個(gè)民航站之間的直達(dá)航線,需要準(zhǔn)備多少種不同飛機(jī)票?
由學(xué)生設(shè)計(jì)好方案并回答.
(1)用加法原理設(shè)計(jì)方案.
首先確定起點(diǎn)站,如果北京是起點(diǎn)站,終點(diǎn)站是上海或廣州,需要制2種飛機(jī)票,若起點(diǎn)站是上海,終點(diǎn)站是北京或廣州,又需制2種飛機(jī)票;若起點(diǎn)站是廣州,終點(diǎn)站是北京或上海,又需要2種飛機(jī)票,共需要2+2+2=6種飛機(jī)票.
(2)用乘法原理設(shè)計(jì)方案.
首先確定起點(diǎn)站,在三個(gè)站中,任選一個(gè)站為起點(diǎn)站,有3種方法.即北京、上海、廣泛任意一個(gè)城市為起點(diǎn)站,當(dāng)選定起點(diǎn)站后,再確定終點(diǎn)站,由于已經(jīng)選了起點(diǎn)站,終點(diǎn)站只能在其余兩個(gè)站去選.那么,根據(jù)乘法原理,在三個(gè)民航站中,每次取兩個(gè),按起點(diǎn)站在前、終點(diǎn)站在后的順序排列不同方法共有3×2=6種.
根據(jù)以上分析由學(xué)生(板演)寫出所有種飛機(jī)票
再看一個(gè)實(shí)例.
在航海中,船艦常以“旗語”相互聯(lián)系,即利用不同顏色的旗子發(fā)送出各種不同的信號(hào).如有紅、黃、綠三面不同顏色的旗子,按一定順序同時(shí)升起表示一定的信號(hào),問這樣總共可以表示出多少種不同的信號(hào)?
找學(xué)生談自己對(duì)這個(gè)問題的想法.
事實(shí)上,紅、黃、綠三面旗子按一定順序的一個(gè)排法表示一種信號(hào),所以不同顏色的同時(shí)升起可以表示出來的信號(hào)種數(shù),也就是紅、黃、綠這三面旗子的所有不同順序的排法總數(shù).
首先,先確定位置的旗子,在紅、黃、綠這三面旗子中任取一個(gè),有3種方法;
其次,確定中間位置的旗子,當(dāng)位置確定之后,中間位置的旗子只能從余下的兩面旗中去取,有2種方法.剩下那面旗子,放在最低位置.
根據(jù)乘法原理,用紅、黃、綠這三面旗子同時(shí)升起表示出所有信號(hào)種數(shù)是:3×2×1=6(種).
根據(jù)學(xué)生的分析,由另外的同學(xué)(板演)寫出三面旗子同時(shí)升起表示信號(hào)的所有情況.(包括每個(gè)位置情況)
第三個(gè)實(shí)例,讓全體學(xué)生都參加設(shè)計(jì),把所有情況(包括每個(gè)位置情況)寫出來.
由數(shù)字1,2,3,4可以組成多少個(gè)沒有重復(fù)數(shù)字的三位數(shù)?寫出這些所有的三位數(shù).
根據(jù)乘法原理,從四個(gè)不同的數(shù)字中,每次取出三個(gè)排成三位數(shù)的方法共有4×3×2=24(個(gè)).
請(qǐng)板演的學(xué)生談?wù)勗鯓酉氲?
第一步,先確定百位上的數(shù)字.在1,2,3,4這四個(gè)數(shù)字中任取一個(gè),有4種取法.
第二步,確定十位上的數(shù)字.當(dāng)百位上的數(shù)字確定以后,十位上的數(shù)字只能從余下的三個(gè)數(shù)字去取,有3種方法.
第三步,確定個(gè)位上的數(shù)字.當(dāng)百位、十位上的數(shù)字都確定以后,個(gè)位上的數(shù)字只能從余下的兩個(gè)數(shù)字中去取,有2種方法.
根據(jù)乘法原理,所以共有4×3×2=24種.
下面由教師提問,學(xué)生回答下列問題
(1)以上我們討論了三個(gè)實(shí)例,這三個(gè)問題有什么共同的地方?
都是從一些研究的對(duì)象之中取出某些研究的對(duì)象.
(2)取出的這些研究對(duì)象又做些什么?
實(shí)質(zhì)上按著順序排成一排,交換不同的位置就是不同的情況.
(3)請(qǐng)大家看書,第×頁(yè)、第×行. 我們把被取的對(duì)象叫做雙元素,如上面問題中的民航站、旗子、數(shù)字都是元素.
上面第一個(gè)問題就是從3個(gè)不同的元素中,任取2個(gè),然后按一定順序排成一列,求一共有多少種不同的排法,后來又寫出所有排法.
第二個(gè)問題,就是從3個(gè)不同元素中,取出3個(gè),然后按一定順序排成一列,求一共有多少排法和寫出所有排法.
第三個(gè)問題呢?
從4個(gè)不同的元素中,任取3個(gè),然后按一定的順序排成一列,求一共有多少種不同的排法,并寫出所有的排法.
給出排列定義
請(qǐng)看課本,第×頁(yè),第×行.一般地說,從n個(gè)不同的元素中,任取m(m≤n)個(gè)元素(本章只研究被取出的元素各不相同的情況),按著一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.
下面由教師提問,學(xué)生回答下列問題
(1)按著這個(gè)定義,結(jié)合上面的問題,請(qǐng)同學(xué)們談?wù)勈裁词窍嗤呐帕?什么是不同的排列?
從排列的定義知道,如果兩個(gè)排列相同,不僅這兩個(gè)排列的元素必須完全相同,而且排列的順序(即元素所在的位置)也必須相同.兩個(gè)條件中,只要有一個(gè)條件不符合,就是不同的排列.
如第一個(gè)問題中,北京—廣州,上海—廣州是兩個(gè)排列,第三個(gè)問題中,213與423也是兩個(gè)排列.
再如第一個(gè)問題中,北京—廣州,廣州—北京;第二個(gè)問題中,紅黃綠與紅綠黃;第三個(gè)問題中231和213雖然元素完全相同,但排列順序不同,也是兩個(gè)排列.
(2)還需要搞清楚一個(gè)問題,“一個(gè)排列”是不是一個(gè)數(shù)?
生:“一個(gè)排列”不應(yīng)當(dāng)是一個(gè)數(shù),而應(yīng)當(dāng)指一件具體的事.如飛機(jī)票“北京—廣州”是一個(gè)排列,“紅黃綠”是一種信號(hào),也是一個(gè)排列.如果問飛機(jī)票有多少種?能表示出多少種信號(hào).只問種數(shù),不用把所有情況羅列出來,才是一個(gè)數(shù).前面提到的第三個(gè)問題,實(shí)質(zhì)上也是這樣的.
三、 課堂練習(xí)
大家思考,下面的排列問題怎樣解?
有四張卡片,每張分別寫著數(shù)碼1,2,3,4.有四個(gè)空箱,分別寫著號(hào)碼1,2,3,4.把卡片放到空箱內(nèi),每箱必須并且只能放一張,而且卡片數(shù)碼與箱子號(hào)碼必須不一致,問有多少種放法?(用投影儀示出)
分析:這是從四張卡片中取出4張,分別放在四個(gè)位置上,只要交換卡片位置,就是不同的放法,是個(gè)附有條件的排列問題.
解法是:第一步把數(shù)碼卡片四張中2,3,4三張任選一個(gè)放在第1空箱.
第二步從余下的三張卡片中任選符合條件的一張放在第2空箱.
第三步從余下的兩張卡片中任選符合條件的一張放在第3空箱.
第四步把最后符合條件的一張放在第四空箱.具體排法,用下面圖表表示:
所以,共有9種放法.
四、作業(yè)
課本:P232練習(xí)1,2,3,4,5,6,7.
一、 知識(shí)梳理
1.三種抽樣方法的聯(lián)系與區(qū)別:
類別 共同點(diǎn) 不同點(diǎn) 相互聯(lián)系 適用范圍
簡(jiǎn)單隨機(jī)抽樣 都是等概率抽樣 從總體中逐個(gè)抽取 總體中個(gè)體比較少
系統(tǒng)抽樣 將總體均勻分成若干部分;按事先確定的規(guī)則在各部分抽取 在起始部分采用簡(jiǎn)單隨機(jī)抽樣 總體中個(gè)體比較多
分層抽樣 將總體分成若干層,按個(gè)體個(gè)數(shù)的比例抽取 在各層抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣 總體中個(gè)體有明顯差異
(1)從含有N個(gè)個(gè)體的總體中抽取n個(gè)個(gè)體的樣本,每個(gè)個(gè)體被抽到的概率為
(2)系統(tǒng)抽樣的步驟: ①將總體中的個(gè)體隨機(jī)編號(hào);②將編號(hào)分段;③在第1段中用簡(jiǎn)單隨機(jī)抽樣確定起始的個(gè)體編號(hào);④按照事先研究的規(guī)則抽取樣本.
(3)分層抽樣的步驟:①分層;②按比例確定每層抽取個(gè)體的個(gè)數(shù);③各層抽樣;④匯合成樣本.
(4) 要懂得從圖表中提取有用信息
如:在頻率分布直方圖中①小矩形的面積=組距 =頻率②眾數(shù)是矩形的中點(diǎn)的橫坐標(biāo)③中位數(shù)的左邊與右邊的直方圖的面積相等,可以由此估計(jì)中位數(shù)的值
2.方差和標(biāo)準(zhǔn)差都是刻畫數(shù)據(jù)波動(dòng)大小的數(shù)字特征,一般地,設(shè)一組樣本數(shù)據(jù) , ,…, ,其平均數(shù)為 則方差 ,標(biāo)準(zhǔn)差
3.古典概型的概率公式:如果一次試驗(yàn)中可能出現(xiàn)的結(jié)果有 個(gè),而且所有結(jié)果都是等可能的,如果事件 包含 個(gè)結(jié)果,那么事件 的概率P=
特別提醒:古典概型的兩個(gè)共同特點(diǎn):
○1 ,即試中有可能出現(xiàn)的基本事件只有有限個(gè),即樣本空間Ω中的元素個(gè)數(shù)是有限的;
○2 ,即每個(gè)基本事件出現(xiàn)的可能性相等。
4. 幾何概型的概率公式: P(A)=
特別提醒:幾何概型的特點(diǎn):試驗(yàn)的結(jié)果是無限不可數(shù)的;○2每個(gè)結(jié)果出現(xiàn)的可能性相等。
二、夯實(shí)基礎(chǔ)
(1)某單位有職工160名,其中業(yè)務(wù)人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個(gè)容量為20的樣本.若用分層抽樣的方法,抽取的業(yè)務(wù)人員、管理人員、后勤人員的人數(shù)應(yīng)分別為____________.
(2)某賽季,甲、乙兩名籃球運(yùn)動(dòng)員都參加了
11場(chǎng)比賽,他們所有比賽得分的情況用如圖2所示的莖葉圖表示,
則甲、乙兩名運(yùn)動(dòng)員得分的中位數(shù)分別為( )
A.19、13 B.13、19 C.20、18 D.18、20
(3)統(tǒng)計(jì)某校1000名學(xué)生的數(shù)學(xué)會(huì)考成績(jī),
得到樣本頻率分布直方圖如右圖示,規(guī)定不低于60分為
及格,不低于80分為優(yōu)秀,則及格人數(shù)是 ;優(yōu)秀率為 。
(4)在一次歌手大獎(jiǎng)賽上,七位評(píng)委為歌手打出的分?jǐn)?shù)如下:
9.4 8.4 9.4 9.9 9.6 9.4 9.7
去掉一個(gè)分和一個(gè)最低分后,所剩數(shù)據(jù)的平均值和方差分別為( )
A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016
(5)將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),則以第一次向上點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y的點(diǎn)(x,y)在圓x2+y2=27的內(nèi)部的概率________.
(6)在長(zhǎng)為12cm的線段AB上任取一點(diǎn)M,并且以線段AM為邊的正方形,則這正方形的面積介于36cm2與81cm2之間的概率為( )
三、高考鏈接
07、某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒與19秒之間,將測(cè)試結(jié)果按如下方式分成六組:第一組,成績(jī)大于等于13秒且小于14秒;第二組,成績(jī)大于等于14秒且小于15秒; 第六組,成績(jī)大于等于18秒且小于等于19秒.右圖
是按上述分組方法得到的頻率分布直方圖.設(shè)成績(jī)小于17秒的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比為 ,成績(jī)大于等于15秒且小于17秒的學(xué)生人數(shù)為 ,則從頻率分布直方圖中可分析出 和 分別為( )
08、從某項(xiàng)綜合能力測(cè)試中抽取100人的成績(jī),統(tǒng)計(jì)如表,則這100人成績(jī)的標(biāo)準(zhǔn)差為( )
分?jǐn)?shù) 5 4 3 2 1
人數(shù) 20 10 30 30 10
09、在區(qū)間 上隨機(jī)取一個(gè)數(shù)x, 的值介于0到 之間的概率為( ).
08、現(xiàn)有8名奧運(yùn)會(huì)志愿者,其中志愿者 通曉日語, 通曉俄語, 通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個(gè)小組.
(Ⅰ)求 被選中的概率;(Ⅱ)求 和 不全被選中的概率.
一、教學(xué)內(nèi)容分析
二面角是我們?nèi)粘I钪薪?jīng)常見到的一個(gè)圖形,它是在學(xué)生學(xué)過空間異面直線所成的角、直線和平面所成角之后,研究的一種空間的角,二面角進(jìn)一步完善了空間角的概念.掌握好本節(jié)課的知識(shí),對(duì)學(xué)生系統(tǒng)地理解直線和平面的知識(shí)、空間想象能力的培養(yǎng),乃至創(chuàng)新能力的培養(yǎng)都具有十分重要的意義.
二、教學(xué)目標(biāo)設(shè)計(jì)
理解二面角及其平面角的概念;能確認(rèn)圖形中的已知角是否為二面角的平面角;能作出二面角的平面角,并能初步運(yùn)用它們解決相關(guān)問題.
三、教學(xué)重點(diǎn)及難點(diǎn)
二面角的平面角的概念的形成以及二面角的平面角的作法.
四、教學(xué)流程設(shè)計(jì)
五、教學(xué)過程設(shè)計(jì)
一、 新課引入
1.復(fù)習(xí)和回顧平面角的有關(guān)知識(shí).
平面中的角
定義 從一個(gè)頂點(diǎn)出發(fā)的兩條射線所組成的圖形,叫做角圖形
結(jié)構(gòu) 射線—點(diǎn)—射線
表示法 ∠AOB,∠O等
2.復(fù)習(xí)和回顧異面直線所成的角、直線和平面所成的角的定義,及其共同特征.(空間角轉(zhuǎn)化為平面角)
3.觀察:陡峭與否,跟山坡面與水平面所成的角大小有關(guān),而山坡面與水平面所成的角就是兩個(gè)平面所成的角.在實(shí)際生活當(dāng)中,能夠轉(zhuǎn)化為兩個(gè)平面所成角例子非常多,比如在這間教室里,誰能舉出能夠體現(xiàn)兩個(gè)平面所成角的實(shí)例?(如圖1,課本的開合、門或窗的開關(guān).)從而,引出“二面角”的定義及相關(guān)內(nèi)容.
二、學(xué)習(xí)新課
(一)二面角的定義
平面中的角 二面角
定義 從一個(gè)頂點(diǎn)出發(fā)的兩條射線所組成的圖形,叫做角 課本P17
圖形
結(jié)構(gòu) 射線—點(diǎn)—射線 半平面—直線—半平面
表示法 ∠AOB,∠O等 二面角α—a—β或α-AB-β
(二)二面角的圖示
1.畫出直立式、平臥式二面角各一個(gè),并分別給予表示.
2.在正方體中認(rèn)識(shí)二面角.
(三)二面角的平面角
平面幾何中的“角”可以看作是一條射線繞其端點(diǎn)旋轉(zhuǎn)而成,它有一個(gè)旋轉(zhuǎn)量,它的大小可以度量,類似地,"二面角"也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成,它也有一個(gè)旋轉(zhuǎn)量,那么,二面角的大小應(yīng)該怎樣度量?
1.二面角的平面角的定義(課本P17).
2.∠AOB的大小與點(diǎn)O在棱上的位置無關(guān).
[說明]①平面與平面的位置關(guān)系,只有相交或平行兩種情況,為了對(duì)相交平面的相互位置作進(jìn)一步的探討,有必要來研究二面角的度量問題.
②與兩條異面直線所成的角、直線和平面所成的角做類比,用“平面角”去度量.
③二面角的平面角的三個(gè)主要特征:角的頂點(diǎn)在棱上;角的兩邊分別在兩個(gè)半平面內(nèi);角的兩邊分別與棱垂直.
3.二面角的平面角的范圍:
(四)例題分析
例1 一張邊長(zhǎng)為a的正三角形紙片ABC,以它的高AD為折痕,將其折成一個(gè) 的二面角,求此時(shí)B、C兩點(diǎn)間的距離.
[說明] ①檢查學(xué)生對(duì)二面角的平面角的定義的掌握情況.
②翻折前后應(yīng)注意哪些量的位置和數(shù)量發(fā)生了變化, 哪些沒變?
例2 如圖,已知邊長(zhǎng)為a的等邊三角形 所在平面外有一點(diǎn)P,使PA=PB=PC=a,求二面角 的大小.
[說明] ①求二面角的步驟:作—證—算—答.
②引導(dǎo)學(xué)生掌握解題可操作性的通法(定義法和線面垂直法).
例3 已知正方體 ,求二面角 的大小.(課本P18例1)
[說明] 使學(xué)生進(jìn)一步熟悉作二面角的平面角的方法.
(五)問題拓展
例4 如圖,山坡的傾斜度(坡面與水平面所成二面角的度數(shù))是 ,山坡上有一條直道CD,它和坡腳的水平線AB的夾角是 ,沿這條路上山,行走100米后升高多少米?
[說明]使學(xué)生明白數(shù)學(xué)既來源于實(shí)際又服務(wù)于實(shí)際.
三、鞏固練習(xí)
1.在棱長(zhǎng)為1的正方體 中,求二面角 的大小.
2. 若二面角 的大小為 ,P在平面 上,點(diǎn)P到 的距離為h,求點(diǎn)P到棱l的距離.
四、課堂小結(jié)
1.二面角的定義
2.二面角的平面角的定義及其范圍
3.二面角的平面角的常用作圖方法
4.求二面角的大小(作—證—算—答)
五、作業(yè)布置
1.課本P18練習(xí)14.4(1)
2.在 二面角的一個(gè)面內(nèi)有一個(gè)點(diǎn),它到另一個(gè)面的距離是10,求它到棱的距離.
3.把邊長(zhǎng)為a的正方形ABCD以BD為軸折疊,使二面角A-BD-C成 的二面角,求A、C兩點(diǎn)的距離.
六、教學(xué)設(shè)計(jì)說明
本節(jié)課的設(shè)計(jì)不是簡(jiǎn)單地將概念直接傳受給學(xué)生,而是考慮到知識(shí)的形成過程,設(shè)法從學(xué)生的數(shù)學(xué)現(xiàn)實(shí)出發(fā),調(diào)動(dòng)學(xué)生積極參與探索、發(fā)現(xiàn)、問題解決全過程.“二面角”及“二面角的平面角”這兩大概念的引出均運(yùn)用了類比的手段和方法.教學(xué)過程中通過教師的層層鋪墊,學(xué)生的主動(dòng)探究,使學(xué)生經(jīng)歷概念的形成、發(fā)展和應(yīng)用過程,有意識(shí)地加強(qiáng)了知識(shí)形成過程的教學(xué).
教學(xué)目標(biāo)
(1)了解用坐標(biāo)法研究幾何問題的方法,了解解析幾何的基本問題.
(2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點(diǎn)的概念.
(3)通過曲線方程概念的教學(xué),培養(yǎng)學(xué)生數(shù)與形相互聯(lián)系、對(duì)立統(tǒng)一的辯證唯物主義觀點(diǎn).
(4)通過求曲線方程的教學(xué),培養(yǎng)學(xué)生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學(xué)生理解解析幾何的思想方法.
(5)進(jìn)一步理解數(shù)形結(jié)合的思想方法.
教學(xué)建議
教材分析
(1)知識(shí)結(jié)構(gòu)
曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標(biāo)法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì).曲線方程的概念和求曲線方程的問題又有內(nèi)在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究.因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題.
(2)重點(diǎn)、難點(diǎn)分析
①本節(jié)內(nèi)容教學(xué)的重點(diǎn)是使學(xué)生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標(biāo)法和解析幾何的思想.
②本節(jié)的難點(diǎn)是曲線方程的概念和求曲線方程的方法.
教法建議
(1)曲線方程的概念是解析幾何的核心概念,也是基礎(chǔ)概念,教學(xué)中應(yīng)從直線方程概念和軌跡概念入手,通過簡(jiǎn)單的實(shí)例引出曲線的點(diǎn)集與方程的解集之間的對(duì)應(yīng)關(guān)系,說明曲線與方程的對(duì)應(yīng)關(guān)系.曲線與方程對(duì)應(yīng)關(guān)系的基礎(chǔ)是點(diǎn)與坐標(biāo)的對(duì)應(yīng)關(guān)系.注意強(qiáng)調(diào)曲線方程的完備性和純粹性.
(2)可以結(jié)合已經(jīng)學(xué)過的直線方程的知識(shí)幫助學(xué)生領(lǐng)會(huì)坐標(biāo)法和解析幾何的思想,學(xué)習(xí)解析幾何的意義和要解決的問題,為學(xué)習(xí)求曲線的方程做好邏輯上的和心理上的準(zhǔn)備.
(3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準(zhǔn)則.
(4)從集合與對(duì)應(yīng)的觀點(diǎn)可以看得更清楚:
設(shè) 表示曲線 上適合某種條件的點(diǎn) 的集合;
表示二元方程的解對(duì)應(yīng)的點(diǎn)的坐標(biāo)的集合.
可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即
(5)在學(xué)習(xí)求曲線方程的方法時(shí),應(yīng)從具體實(shí)例出發(fā),引導(dǎo)學(xué)生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個(gè)過渡是一個(gè)從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個(gè)過程中提醒學(xué)生注意轉(zhuǎn)化是否為等價(jià)的,這將決定第五步如何做.同時(shí)教師不要生硬地給出或總結(jié)出求解步驟,應(yīng)在充分分析實(shí)例的基礎(chǔ)上讓學(xué)生自然地獲得.教學(xué)中對(duì)課本例2的解法分析很重要.
這五個(gè)步驟的實(shí)質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即
文字語言中的幾何條件 數(shù)學(xué)符號(hào)語言中的等式 數(shù)學(xué)符號(hào)語言中含動(dòng)點(diǎn)坐標(biāo) , 的代數(shù)方程 簡(jiǎn)化了的 , 的代數(shù)方程
由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個(gè)形式的特點(diǎn)是“含動(dòng)點(diǎn)坐標(biāo)的代數(shù)方程.”
(6)求曲線方程的問題是解析幾何中一個(gè)基本的問題和長(zhǎng)期的任務(wù),不是一下子就徹底解決的,求解的方法是在不斷的學(xué)習(xí)中掌握的,教學(xué)中要把握好“度”.
一、課程性質(zhì)與任務(wù)
數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué),是科學(xué)和技術(shù)的基礎(chǔ),是人類文化的重要組成部分。數(shù)學(xué)課程是中等職業(yè)學(xué)校學(xué)生必修的一門公共基礎(chǔ)課。本課程的任務(wù)是:使學(xué)生掌握必要的數(shù)學(xué)基礎(chǔ)知識(shí),具備必需的相關(guān)技能與能力,為學(xué)習(xí)專業(yè)知識(shí)、掌握職業(yè)技能、繼續(xù)學(xué)習(xí)和終身發(fā)展奠定基礎(chǔ)。二、課程教學(xué)目標(biāo)
1.在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進(jìn)一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識(shí)。2.培養(yǎng)學(xué)生的計(jì)算技能、計(jì)算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學(xué)思維能力。
3.引導(dǎo)學(xué)生逐步養(yǎng)成良好的學(xué)習(xí)習(xí)慣、實(shí)踐意識(shí)、創(chuàng)新意識(shí)和實(shí)事求是的科學(xué)態(tài)度,提高學(xué)生就業(yè)能力與創(chuàng)業(yè)能力。三、教學(xué)內(nèi)容結(jié)構(gòu)
本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個(gè)部分構(gòu)成。
1.基礎(chǔ)模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達(dá)到的基本要求,教學(xué)時(shí)數(shù)為128學(xué)時(shí)。2.職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實(shí)際情況進(jìn)行選擇和安排教學(xué),教學(xué)時(shí)數(shù)為32~64學(xué)時(shí)。
3.拓展模塊是滿足學(xué)生個(gè)性發(fā)展和繼續(xù)學(xué)習(xí)需要的任意選修內(nèi)容,教學(xué)時(shí)數(shù)不做統(tǒng)一規(guī)定。四、教學(xué)內(nèi)容與要求
(一)本大綱教學(xué)要求用語的表述1.認(rèn)知要求(分為三個(gè)層次)
了解:初步知道知識(shí)的含義及其簡(jiǎn)單應(yīng)用。
理解:懂得知識(shí)的概念和規(guī)律(定義、定理、法則等)以及與其他相關(guān)知識(shí)的聯(lián)系。掌握:能夠應(yīng)用知識(shí)的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項(xiàng)技能與四項(xiàng)能力)
計(jì)算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進(jìn)行運(yùn)算求解。計(jì)算工具使用技能:正確使用科學(xué)型計(jì)算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對(duì)數(shù)據(jù)(數(shù)據(jù)表格)進(jìn)行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢(shì),數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。
空間想象能力:依據(jù)文字、語言描述,或較簡(jiǎn)單的幾何體及其組合,想象相應(yīng)的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。
分析與解決問題能力:能對(duì)工作和生活中的簡(jiǎn)單數(shù)學(xué)相關(guān)問題,作出分析并運(yùn)用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。
數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識(shí),運(yùn)用類比、歸納、綜合等方法,對(duì)數(shù)學(xué)及其應(yīng)用問題能進(jìn)行有條理的思考、判斷、推理和求解;針對(duì)不同的問題(或需求),會(huì)選擇合適的模型(模式)。
(二)教學(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時(shí))第1單元集合(10學(xué)時(shí))
第2單元不等式(8學(xué)時(shí))
第3單元函數(shù)(12學(xué)時(shí))
第4單元指數(shù)函數(shù)與對(duì)數(shù)函數(shù)(12學(xué)時(shí))
第5單元三角函數(shù)(18學(xué)時(shí))
第6單元數(shù)列(10學(xué)時(shí))
第7單元平面向量(矢量)(10學(xué)時(shí))
第8單元直線和圓的方程(18學(xué)時(shí))
第9單元立體幾何(14學(xué)時(shí))
第10單元概率與統(tǒng)計(jì)初步(16學(xué)時(shí))
2.職業(yè)模塊
第1單元三角計(jì)算及其應(yīng)用(16學(xué)時(shí))
第2單元坐標(biāo)變換與參數(shù)方程(12學(xué)時(shí))
第3單元復(fù)數(shù)及其應(yīng)用(10學(xué)時(shí))
1.如圖,已知直線L:的右焦點(diǎn)F,且交橢圓C于A、B兩點(diǎn),點(diǎn)A、B在直線上的射影依次為點(diǎn)D、E。
(1)若拋物線的焦點(diǎn)為橢圓C的上頂點(diǎn),求橢圓C的方程;
(2)(理)連接AE、BD,試探索當(dāng)m變化時(shí),直線AE、BD是否相交于一定點(diǎn)N?若交于定點(diǎn)N,請(qǐng)求出N點(diǎn)的坐標(biāo),并給予證明;否則說明理由。
(文)若為x軸上一點(diǎn),求證:
2.如圖所示,已知圓定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足,點(diǎn)N的軌跡為曲線E。
(1)求曲線E的方程;
(2)若過定點(diǎn)F(0,2)的直線交曲線E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿足的取值范圍。
3.設(shè)橢圓C:的左焦點(diǎn)為F,上頂點(diǎn)為A,過點(diǎn)A作垂直于AF的直線交橢圓C于另外一點(diǎn)P,交x軸正半軸于點(diǎn)Q,且
⑴求橢圓C的離心率;
⑵若過A、Q、F三點(diǎn)的圓恰好與直線
l:相切,求橢圓C的方程.
4.設(shè)橢圓的離心率為e=
(1)橢圓的左、右焦點(diǎn)分別為F1、F2、A是橢圓上的一點(diǎn),且點(diǎn)A到此兩焦點(diǎn)的距離之和為4,求橢圓的方程.
(2)求b為何值時(shí),過圓x2+y2=t2上一點(diǎn)M(2,)處的切線交橢圓于Q1、Q2兩點(diǎn),而且OQ1OQ2.
5.已知曲線上任意一點(diǎn)P到兩個(gè)定點(diǎn)F1(-,0)和F2(,0)的距離之和為4.
(1)求曲線的方程;
(2)設(shè)過(0,-2)的直線與曲線交于C、D兩點(diǎn),且為坐標(biāo)原點(diǎn)),求直線的方程.
6.已知橢圓的左焦點(diǎn)為F,左、右頂點(diǎn)分別為A、C,上頂點(diǎn)為B.過F、B、C作⊙P,其中圓心P的坐標(biāo)為(m,n).
(Ⅰ)當(dāng)m+n0時(shí),求橢圓離心率的范圍;
(Ⅱ)直線AB與⊙P能否相切?證明你的結(jié)論.
7.有如下結(jié)論:圓上一點(diǎn)處的切線方程為,類比也有結(jié)論:橢圓處的切線方程為,過橢圓C:的右準(zhǔn)線l上任意一點(diǎn)M引橢圓C的兩條切線,切點(diǎn)為A、B.
(1)求證:直線AB恒過一定點(diǎn);(2)當(dāng)點(diǎn)M在的縱坐標(biāo)為1時(shí),求△ABM的面積
8.已知點(diǎn)P(4,4),圓C:與橢圓E:有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),直線PF1與圓C相切.
(Ⅰ)求m的值與橢圓E的方程;
(Ⅱ)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求的取值范圍.
9.橢圓的對(duì)稱中心在坐標(biāo)原點(diǎn),一個(gè)頂點(diǎn)為,右焦點(diǎn)與點(diǎn)的距離為。
(1)求橢圓的方程;
(2)是否存在斜率的直線:,使直線與橢圓相交于不同的兩點(diǎn)滿足,若存在,求直線的傾斜角;若不存在,說明理由。
10.橢圓方程為的一個(gè)頂點(diǎn)為,離心率。
(1)求橢圓的方程;
(2)直線:與橢圓相交于不同的兩點(diǎn)滿足,求。
11.已知橢圓的左焦點(diǎn)為F,左右頂點(diǎn)分別為A,C上頂點(diǎn)為B,過F,B,C三點(diǎn)作,其中圓心P的坐標(biāo)為.
(1)若橢圓的離心率,求的方程;
(2)若的圓心在直線上,求橢圓的方程.
12.已知直線與曲線交于不同的兩點(diǎn),為坐標(biāo)原點(diǎn).
(Ⅰ)若,求證:曲線是一個(gè)圓;
(Ⅱ)若,當(dāng)且時(shí),求曲線的離心率的取值范圍.
13.設(shè)橢圓的左、右焦點(diǎn)分別為、,A是橢圓C上的一點(diǎn),且,坐標(biāo)原點(diǎn)O到直線的距離為.
(1)求橢圓C的方程;
(2)設(shè)Q是橢圓C上的一點(diǎn),過Q的直線l交x軸于點(diǎn),較y軸于點(diǎn)M,若,求直線l的方程.
14.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸的負(fù)半軸上,過其上一點(diǎn)的切線方程為為常數(shù)).
(I)求拋物線方程;
(II)斜率為的直線PA與拋物線的另一交點(diǎn)為A,斜率為的直線PB與拋物線的另一交點(diǎn)為B(A、B兩點(diǎn)不同),且滿足,求證線段PM的中點(diǎn)在y軸上;
(III)在(II)的條件下,當(dāng)時(shí),若P的坐標(biāo)為(1,-1),求PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)的取值范圍.
15.已知?jiǎng)狱c(diǎn)A、B分別在x軸、y軸上,且滿足AB=2,點(diǎn)P在線段AB上,且
設(shè)點(diǎn)P的軌跡方程為c。
(1)求點(diǎn)P的軌跡方程C;
(2)若t=2,點(diǎn)M、N是C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)動(dòng)點(diǎn)(M、N不在坐標(biāo)軸上),點(diǎn)Q
坐標(biāo)為求△QMN的面積S的最大值。
16.設(shè)上的兩點(diǎn),
已知,,若且橢圓的離心率短軸長(zhǎng)為2,為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線AB過橢圓的焦點(diǎn)F(0,c),(c為半焦距),求直線AB的斜率k的值;
(Ⅲ)試問:△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說明理由
17.如圖,F(xiàn)是橢圓(a0)的一個(gè)焦點(diǎn),A,B是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率為.點(diǎn)C在x軸上,BCBF,B,C,F(xiàn)三點(diǎn)確定的圓M恰好與直線l1:相切.
(Ⅰ)求橢圓的方程:
(Ⅱ)過點(diǎn)A的直線l2與圓M交于PQ兩點(diǎn),且,求直線l2的方程.
18.如圖,橢圓長(zhǎng)軸端點(diǎn)為,為橢圓中心,為橢圓的右焦點(diǎn),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)記橢圓的上頂點(diǎn)為,直線交橢圓于兩點(diǎn),問:是否存在直線,使點(diǎn)恰為的垂心?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
19.如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且經(jīng)過點(diǎn).直線交橢圓于兩不同的點(diǎn).
20.設(shè),點(diǎn)在軸上,點(diǎn)在軸上,且
(1)當(dāng)點(diǎn)在軸上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;
(2)設(shè)是曲線上的點(diǎn),且成等差數(shù)列,當(dāng)?shù)拇怪逼椒志€與軸交于點(diǎn)時(shí),求點(diǎn)坐標(biāo).
21.已知點(diǎn)是平面上一動(dòng)點(diǎn),且滿足
(1)求點(diǎn)的軌跡對(duì)應(yīng)的方程;
(2)已知點(diǎn)在曲線上,過點(diǎn)作曲線的兩條弦和,且,判斷:直線是否過定點(diǎn)?試證明你的結(jié)論.
22.已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過、、三點(diǎn).
(1)求橢圓的方程:
(2)若點(diǎn)D為橢圓上不同于、的任意一點(diǎn),,當(dāng)內(nèi)切圓的面積最大時(shí)。求內(nèi)切圓圓心的坐標(biāo);
(3)若直線與橢圓交于、兩點(diǎn),證明直線與直線的交點(diǎn)在直線上.
23.過直角坐標(biāo)平面中的拋物線的焦點(diǎn)作一條傾斜角為的直線與拋物線相交于A,B兩點(diǎn)。
(1)用表示A,B之間的距離;
(2)證明:的大小是與無關(guān)的定值,
并求出這個(gè)值。
24.設(shè)分別是橢圓C:的左右焦點(diǎn)
(1)設(shè)橢圓C上的點(diǎn)到兩點(diǎn)距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo)
(2)設(shè)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段的中點(diǎn)B的軌跡方程
(3)設(shè)點(diǎn)P是橢圓C上的任意一點(diǎn),過原點(diǎn)的直線L與橢圓相交于M,N兩點(diǎn),當(dāng)直線PM,PN的斜率都存在,并記為試探究的值是否與點(diǎn)P及直線L有關(guān),并證明你的結(jié)論。
25.已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(I)求橢圓的方程;
(II)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(III)設(shè)與軸交于點(diǎn),不同的兩點(diǎn)在上,且滿足求的取值范圍.
26.如圖所示,已知橢圓:,、為
其左、右焦點(diǎn),為右頂點(diǎn),為左準(zhǔn)線,過的直線:與橢圓相交于、
兩點(diǎn),且有:(為橢圓的半焦距)
(1)求橢圓的離心率的最小值;
(2)若,求實(shí)數(shù)的取值范圍;
(3)若,,
求證:、兩點(diǎn)的縱坐標(biāo)之積為定值;
27.已知橢圓的左焦點(diǎn)為,左右頂點(diǎn)分別為,上頂點(diǎn)為,過三點(diǎn)作圓,其中圓心的坐標(biāo)為
(1)當(dāng)時(shí),橢圓的離心率的取值范圍
(2)直線能否和圓相切?證明你的結(jié)論
28.已知點(diǎn)A(-1,0),B(1,-1)和拋物線.,O為坐標(biāo)原點(diǎn),過點(diǎn)A的動(dòng)直線l交拋物線C于M、P,直線MB交拋物線C于另一點(diǎn)Q,如圖.
(I)證明:為定值;
(II)若△POM的面積為,求向量與的夾角;
(Ⅲ)證明直線PQ恒過一個(gè)定點(diǎn).
29.已知橢圓C:上動(dòng)點(diǎn)到定點(diǎn),其中的距離的最小值為1.
(1)請(qǐng)確定M點(diǎn)的坐標(biāo)
(2)試問是否存在經(jīng)過M點(diǎn)的直線,使與橢圓C的兩個(gè)交點(diǎn)A、B滿足條件(O為原點(diǎn)),若存在,求出的方程,若不存在請(qǐng)說是理由。
30.已知橢圓,直線與橢圓相交于兩點(diǎn).
(Ⅰ)若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;
(Ⅱ)在軸上是否存在點(diǎn),使的值與無關(guān)?若存在,求出的值;若不存在,請(qǐng)說明理由.
31.直線AB過拋物線的焦點(diǎn)F,并與其相交于A、B兩點(diǎn)。Q是線段AB的中點(diǎn),M是拋物線的準(zhǔn)線與y軸的交點(diǎn).O是坐標(biāo)原點(diǎn).
(I)求的取值范圍;
(Ⅱ)過A、B兩點(diǎn)分剮作此撒物線的切線,兩切線相交于N點(diǎn).求證:∥;
(Ⅲ)若P是不為1的正整數(shù),當(dāng),△ABN的面積的取值范圍為時(shí),求該拋物線的方程.
32.如圖,設(shè)拋物線()的準(zhǔn)線與軸交于,焦點(diǎn)為;以、為焦點(diǎn),離心率的橢圓與拋物線在軸上方的一個(gè)交點(diǎn)為.
(Ⅰ)當(dāng)時(shí),求橢圓的方程及其右準(zhǔn)線的方程;
(Ⅱ)在(Ⅰ)的條件下,直線經(jīng)過橢圓的右焦點(diǎn),與拋物線交于、,如果以線段為直徑作圓,試判斷點(diǎn)與圓的位置關(guān)系,并說明理由;
(Ⅲ)是否存在實(shí)數(shù),使得的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù);若不存在,請(qǐng)說明理由.
33.已知點(diǎn)和動(dòng)點(diǎn)滿足:,且存在正常數(shù),使得。
(1)求動(dòng)點(diǎn)P的軌跡C的方程。
(2)設(shè)直線與曲線C相交于兩點(diǎn)E,F(xiàn),且與y軸的交點(diǎn)為D。若求的值。
34.已知橢圓的右準(zhǔn)線與軸相交于點(diǎn),右焦點(diǎn)到上頂點(diǎn)的距離為,點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn).
(I)求橢圓的方程;
(Ⅱ)是否存在過點(diǎn)且與軸不垂直的直線與橢圓交于、兩點(diǎn),使得,并說明理由.
35.已知橢圓C:(.
(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過定點(diǎn)的直線與橢圓C交于不同的兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率k的取值范圍;
(3)如圖,過原點(diǎn)任意作兩條互相垂直的直線與橢圓()相交于四點(diǎn),設(shè)原點(diǎn)到四邊形一邊的距離為,試求時(shí)滿足的條件.
36.已知若過定點(diǎn)、以()為法向量的直線與過點(diǎn)以為法向量的直線相交于動(dòng)點(diǎn).
(1)求直線和的方程;
(2)求直線和的斜率之積的值,并證明必存在兩個(gè)定點(diǎn)使得恒為定值;
(3)在(2)的條件下,若是上的兩個(gè)動(dòng)點(diǎn),且,試問當(dāng)取最小值時(shí),向量與是否平行,并說明理由。
37.已知點(diǎn),點(diǎn)(其中),直線、都是圓的切線.
(Ⅰ)若面積等于6,求過點(diǎn)的拋物線的方程;
(Ⅱ)若點(diǎn)在軸右邊,求面積的最小值.
38.我們知道,判斷直線與圓的位置關(guān)系可以用圓心到直線的距離進(jìn)行判別,那么直線與橢圓的位置關(guān)系有類似的判別方法嗎?請(qǐng)同學(xué)們進(jìn)行研究并完成下面問題。
(1)設(shè)F1、F2是橢圓的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線的距離分別為d1、d2,試求d1d2的值,并判斷直線L與橢圓M的位置關(guān)系。
(2)設(shè)F1、F2是橢圓的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線
(m、n不同時(shí)為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1d2的值。
(3)試寫出一個(gè)能判斷直線與橢圓的位置關(guān)系的充要條件,并證明。
(4)將(3)中得出的結(jié)論類比到其它曲線,請(qǐng)同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明)。
39.已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)是準(zhǔn)線上的動(dòng)點(diǎn),直線交拋物線于兩點(diǎn),若點(diǎn)的縱坐標(biāo)為,點(diǎn)為準(zhǔn)線與軸的交點(diǎn).
(Ⅰ)求直線的方程;(Ⅱ)求的面積范圍;
(Ⅲ)設(shè),,求證為定值.
40.已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(I)求橢圓的方程;
(II)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(III)設(shè)與軸交于點(diǎn),不同的兩點(diǎn)在上,且滿足求的取值范圍.
41.已知以向量為方向向量的直線過點(diǎn),拋物線:的頂點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在該拋物線的準(zhǔn)線上.
(1)求拋物線的方程;
(2)設(shè)、是拋物線上的兩個(gè)動(dòng)點(diǎn),過作平行于軸的直線,直線與直線交于點(diǎn),若(為坐標(biāo)原點(diǎn),、異于點(diǎn)),試求點(diǎn)的軌跡方程。
42.如圖,設(shè)拋物線()的準(zhǔn)線與軸交于,焦點(diǎn)為;以、為焦點(diǎn),離心率的橢圓與拋物線在軸上方的一個(gè)交點(diǎn)為.
(Ⅰ)當(dāng)時(shí),求橢圓的方程及其右準(zhǔn)線的方程;
(Ⅱ)在(Ⅰ)的條件下,直線經(jīng)過橢圓的右焦點(diǎn),
與拋物線交于、,如果以線段為直徑作圓,
試判斷點(diǎn)與圓的位置關(guān)系,并說明理由;
(Ⅲ)是否存在實(shí)數(shù),使得的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù);若不存在,請(qǐng)說明理由.
43.設(shè)橢圓的`一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,分別是橢圓的左、右焦點(diǎn),且離心率且過橢圓右焦點(diǎn)的直線與橢圓C交于兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在直線,使得.若存在,求出直線的方程;若不存在,說明理由.
(Ⅲ)若AB是橢圓C經(jīng)過原點(diǎn)O的弦,MNAB,求證:為定值.
44.設(shè)是拋物線的焦點(diǎn),過點(diǎn)M(-1,0)且以為方向向量的直線順次交拋物線于兩點(diǎn)。
(Ⅰ)當(dāng)時(shí),若與的夾角為,求拋物線的方程;
(Ⅱ)若點(diǎn)滿足,證明為定值,并求此時(shí)△的面積
45.已知點(diǎn),點(diǎn)在軸上,點(diǎn)在軸的正半軸上,點(diǎn)在直線上,且滿足.
(Ⅰ)當(dāng)點(diǎn)在軸上移動(dòng)時(shí),求點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)、為軌跡上兩點(diǎn),且0,,求實(shí)數(shù),
使,且.
46.已知橢圓的右焦點(diǎn)為F,上頂點(diǎn)為A,P為C上任一點(diǎn),MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切。
(1)已知橢圓的離心率;
(2)若的最大值為49,求橢圓C的方程.
一、學(xué)習(xí)目標(biāo)與自我評(píng)估
1 掌握利用單位圓的幾何方法作函數(shù) 的圖象
2 結(jié)合 的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期
3 會(huì)用代數(shù)方法求 等函數(shù)的周期
4 理解周期性的幾何意義
二、學(xué)習(xí)重點(diǎn)與難點(diǎn)
“周期函數(shù)的概念”, 周期的求解。
三、學(xué)法指導(dǎo)
1、 是周期函數(shù)是指對(duì)定義域中所有 都有,即 應(yīng)是恒等式。
2、周期函數(shù)一定會(huì)有周期,但不一定存在最小正周期。
四、學(xué)習(xí)活動(dòng)與意義建構(gòu)
五、重點(diǎn)與難點(diǎn)探究
例1、若鐘擺的高度 與時(shí)間 之間的函數(shù)關(guān)系如圖所示
(1)求該函數(shù)的周期;
(2)求 時(shí)鐘擺的高度。
例2、求下列函數(shù)的周期。
(1) (2)
總結(jié):(1)函數(shù) (其中 均為常數(shù),且的周期T= 。
(2)函數(shù) (其中 均為常數(shù),且的周期T= 。
例3、求證: 的周期為 。
例4、(1)研究 和 函數(shù)的圖象,分析其周期性。(2)求證: 的周期為 (其中 均為常數(shù),且
總結(jié):函數(shù) (其中 均為常數(shù),且__的周期T= 。
例5、(1)求 的周期。
(2)已知 滿足 ,求證: 是周期函數(shù)
課后思考:能否利用單位圓作函數(shù) 的圖象。
六、作業(yè):
七、自主體驗(yàn)與運(yùn)用
1、函數(shù) 的周期為 ( )
A、 B、 C、 D、
2、函數(shù) 的最小正周期是 ( )
A、 B、 C、 D、
3、函數(shù) 的最小正周期是 ( )
A、 B、 C、 D、
4、函數(shù) 的周期是 ( )
A、 B、 C、 D、
5、設(shè) 是定義域?yàn)镽,最小正周期為 的函數(shù),若 ,則 的值等于 ( )
A、1 B、 C、0 D、
6、函數(shù) 的最小正周期是 ,則
7、已知函數(shù) 的最小正周期不大于2,則正整數(shù)
的最小值是
8、求函數(shù) 的最小正周期為T,且 ,則正整數(shù)的值是
9、已知函數(shù) 是周期為6的奇函數(shù),且 則
10、若函數(shù) ,則
11、用周期的定義分析 的周期。
12、已知函數(shù) ,如果使 的周期在 內(nèi),求正整數(shù) 的值
13、一機(jī)械振動(dòng)中,某質(zhì)子離開平衡位置的位移 與時(shí)間 之間的函數(shù)關(guān)系如圖所示:
(1) 求該函數(shù)的周期;
(2) 求 時(shí),該質(zhì)點(diǎn)離開平衡位置的位移。
14、已知 是定義在R上的函數(shù),且對(duì)任意 有成立,
(1) 證明: 是周期函數(shù);
(2) 若 求 的值。
一、說教材
1、從在教材中的地位與作用來看
《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。
2、從學(xué)生認(rèn)知角度看
從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢(shì)利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯(cuò)。
3、學(xué)情分析
教學(xué)對(duì)象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn)。
4、重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用。
教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用。
公式推導(dǎo)所使用的“錯(cuò)位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn)。
二、說目標(biāo)
知識(shí)與技能目標(biāo):
理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過程、公式的特點(diǎn),在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題。
過程與方法目標(biāo):
通過對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。
情感與態(tài)度價(jià)值觀:
通過對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn)。
三、說過程
學(xué)生是認(rèn)知的主體,設(shè)計(jì)教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識(shí)的形成與發(fā)展過程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了如下的教學(xué)過程:
1。創(chuàng)設(shè)情境,提出問題
在古印度,有個(gè)名叫西薩的人,發(fā)明了國(guó)際象棋,當(dāng)時(shí)的印度國(guó)王大為贊賞,對(duì)他說:我可以滿足你的任何要求。西薩說:請(qǐng)給我棋盤的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國(guó)王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來后,國(guó)王大吃一驚。為什么呢?
設(shè)計(jì)意圖:設(shè)計(jì)這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調(diào)動(dòng)學(xué)習(xí)的積極性。故事內(nèi)容緊扣本節(jié)課的主題與重點(diǎn)。
此時(shí)我問:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥??倲?shù)。帶著這樣的問題,學(xué)生會(huì)動(dòng)手算了起來,他們想到用計(jì)算器依次算出各項(xiàng)的值,然后再求和。這時(shí)我對(duì)他們的這種思路給予肯定。
設(shè)計(jì)意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無用功”,急急忙忙地拋出“錯(cuò)位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時(shí)間營(yíng)造知識(shí)形成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙。同時(shí),形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆。
2、師生互動(dòng),探究問題
在肯定他們的思路后,我接著問:1,2,22,…,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學(xué)問題呢?
探討1:,記為(1)式,注意觀察每一項(xiàng)的特征,有何聯(lián)系?(學(xué)生會(huì)發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)
探討2:如果我們把每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現(xiàn)?
設(shè)計(jì)意圖:留出時(shí)間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學(xué)生看來卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機(jī)。
經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就消去了,得到:。老師指出:這就是錯(cuò)位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?
設(shè)計(jì)意圖:經(jīng)過繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。
3、類比聯(lián)想,解決問題
這時(shí)我再順勢(shì)引導(dǎo)學(xué)生將結(jié)論一般化,
這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對(duì)個(gè)別學(xué)生進(jìn)行指導(dǎo)。
設(shè)計(jì)意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感。
對(duì)不對(duì)?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時(shí)是什么數(shù)列?此時(shí)sn=?(這里引導(dǎo)學(xué)生對(duì)q進(jìn)行分類討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎(chǔ)。)
再次追問:結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)
設(shè)計(jì)意圖:通過反問精講,一方面使學(xué)生加深對(duì)知識(shí)的認(rèn)識(shí),完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷?duì)知識(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話,然而卻有畫龍點(diǎn)睛之妙用。
4、討論交流,延伸拓展